#!/usr/bin/env python from __future__ import annotations import os import gradio as gr from huggingface_hub import HfApi from constants import MODEL_LIBRARY_ORG_NAME from inference import InferencePipeline class InferenceUtil: def __init__(self, hf_token: str | None): self.hf_token = hf_token def load_hub_model_list(self) -> dict: api = HfApi(token=self.hf_token) choices = [ info.modelId for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME) ] return gr.update(choices=choices, value=choices[0] if choices else None) def load_model_info(self, model_id: str) -> tuple[str, str]: try: card = InferencePipeline.get_model_card(model_id, self.hf_token) except Exception: return '', '' base_model = getattr(card.data, 'base_model', '') training_prompt = getattr(card.data, 'training_prompt', '') return base_model, training_prompt def reload_model_list_and_update_model_info(self) -> tuple[dict, str, str]: model_list_update = self.load_hub_model_list() model_list = model_list_update['choices'] model_info = self.load_model_info(model_list[0] if model_list else '') return model_list_update, *model_info TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/)' HF_TOKEN = os.getenv('HF_TOKEN') pipe = InferencePipeline(HF_TOKEN) app = InferenceUtil(HF_TOKEN) with gr.Blocks(css='style.css') as demo: gr.Markdown(TITLE) with gr.Row(): with gr.Column(): with gr.Box(): reload_button = gr.Button('Reload Model List') model_id = gr.Dropdown(label='Model ID', choices=None, value=None) with gr.Accordion( label= 'Model info (Base model and prompt used for training)', open=False): with gr.Row(): base_model_used_for_training = gr.Text( label='Base model', interactive=False) prompt_used_for_training = gr.Text( label='Training prompt', interactive=False) prompt = gr.Textbox(label='Prompt', max_lines=1, placeholder='Example: "A panda is surfing"') video_length = gr.Slider(label='Video length', minimum=4, maximum=12, step=1, value=8) fps = gr.Slider(label='FPS', minimum=1, maximum=12, step=1, value=1) seed = gr.Slider(label='Seed', minimum=0, maximum=100000, step=1, value=0) with gr.Accordion('Other Parameters', open=False): num_steps = gr.Slider(label='Number of Steps', minimum=0, maximum=100, step=1, value=50) guidance_scale = gr.Slider(label='CFG Scale', minimum=0, maximum=50, step=0.1, value=7.5) run_button = gr.Button('Generate') gr.Markdown(''' - It takes a few minutes to download model first. - Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100) ''') with gr.Column(): result = gr.Video(label='Result') reload_button.click(fn=app.reload_model_list_and_update_model_info, inputs=None, outputs=[ model_id, base_model_used_for_training, prompt_used_for_training, ]) model_id.change(fn=app.load_model_info, inputs=model_id, outputs=[ base_model_used_for_training, prompt_used_for_training, ]) inputs = [ model_id, prompt, video_length, fps, seed, num_steps, guidance_scale, ] prompt.submit(fn=pipe.run, inputs=inputs, outputs=result) run_button.click(fn=pipe.run, inputs=inputs, outputs=result) demo.queue().launch()