File size: 4,410 Bytes
c87fdad
 
 
 
 
 
c6b929b
c87fdad
 
 
 
 
 
 
c6b929b
c87fdad
 
 
 
 
 
 
c6b929b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c87fdad
 
c6b929b
 
 
 
 
 
 
 
c87fdad
 
 
 
 
c6b929b
c87fdad
 
c6b929b
c87fdad
c6b929b
54e35ae
c6b929b
 
 
 
 
 
 
 
 
54e35ae
c6b929b
 
54e35ae
 
 
c6b929b
c87fdad
c6b929b
c87fdad
c6b929b
c87fdad
 
 
 
 
 
 
 
 
 
 
54e35ae
c87fdad
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import os
import json
import numpy as np
import requests
from openai import OpenAI
import time

def call_gpt3_5(prompt, api_key):
    client = OpenAI(api_key=api_key)
    try:
        response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "You are a Python expert capable of implementing specific functions for a Swarm Neural Network (SNN). Return only the Python code for the requested function."},
                {"role": "user", "content": prompt}
            ]
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error calling GPT-3.5: {str(e)}"

class Agent:
    def __init__(self, api_url):
        self.api_url = api_url
        self.data = None

    def make_api_call(self):
        try:
            response = requests.get(self.api_url)
            if response.status_code == 200:
                self.data = response.json()
            else:
                self.data = {"error": f"API call failed with status code {response.status_code}"}
        except Exception as e:
            self.data = {"error": str(e)}

class SwarmNeuralNetwork:
    def __init__(self, api_url, num_agents, calls_per_agent, special_config):
        self.api_url = api_url
        self.num_agents = num_agents
        self.calls_per_agent = calls_per_agent
        self.special_config = special_config
        self.agents = [Agent(api_url) for _ in range(num_agents)]

    def run(self):
        start_time = time.time()
        for agent in self.agents:
            for _ in range(self.calls_per_agent):
                agent.make_api_call()
        self.execution_time = time.time() - start_time

    def process_data(self):
        # This function will be implemented by GPT-3.5
        pass

def execute_snn(api_url, openai_api_key, num_agents, calls_per_agent, special_config):
    prompt = f"""
    Implement the process_data method for the SwarmNeuralNetwork class. The method should:
    1. Analyze the data collected by all agents (accessible via self.agents[i].data)
    2. Generate a summary of the collected data
    3. Derive insights from the collective behavior
    4. Calculate performance metrics
    5. Return a dictionary with keys 'data_summary', 'insights', and 'performance'

    Consider the following parameters:
    - API URL: {api_url}
    - Number of Agents: {num_agents}
    - Calls per Agent: {calls_per_agent}
    - Special Configuration: {special_config if special_config else 'None'}

    Provide only the Python code for the process_data method.
    """
    
    process_data_code = call_gpt3_5(prompt, openai_api_key)
    
    if not process_data_code.startswith("Error"):
        try:
            # Create the SNN instance
            snn = SwarmNeuralNetwork(api_url, num_agents, calls_per_agent, special_config)
            
            # Add the process_data method to the SNN class
            exec(process_data_code, globals())
            SwarmNeuralNetwork.process_data = process_data
            
            # Run the SNN
            snn.run()
            
            # Process the data and get results
            result = snn.process_data()
            
            return f"Results from the swarm neural network:\n\n{json.dumps(result, indent=2)}"
        except Exception as e:
            return f"Error executing SNN: {str(e)}\n\nGenerated process_data code:\n{process_data_code}"
    else:
        return process_data_code

# Define the Gradio interface (same as before)
iface = gr.Interface(
    fn=execute_snn,
    inputs=[
        gr.Textbox(label="API URL for your task"),
        gr.Textbox(label="OpenAI API Key", type="password"),
        gr.Number(label="Number of Agents", minimum=1, maximum=100, step=1),
        gr.Number(label="Calls per Agent", minimum=1, maximum=100, step=1),
        gr.Textbox(label="Special Configuration (optional)")
    ],
    outputs="text",
    title="Swarm Neural Network Simulator",
    description="Enter the parameters for your Swarm Neural Network (SNN) simulation. The SNN will be constructed and executed based on your inputs.",
    examples=[
        ["https://meowfacts.herokuapp.com/", "your-api-key-here", 3, 1, ""],
        ["https://api.publicapis.org/entries", "your-api-key-here", 5, 2, "category=Animals"]
    ]
)

# Launch the interface
iface.launch()