import time from threading import Thread import gradio as gr import torch from PIL import Image from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer # Model Configuration model_id = "xtuner/llava-llama-3-8b-v1_1-transformers" print("Loading model...") processor = AutoProcessor.from_pretrained(model_id) # Adjusted model loading to use Accelerate's `device_map` model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto" # Uses the Accelerate library for efficient memory usage ) print("Model loaded successfully!") PLACEHOLDER = """

LLaVA-Llama-3-8B

Llava-Llama-3-8B is fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 using ShareGPT4V-PT and InternVL-SFT by XTuner.

""" def bot_streaming(message, history): """Handles message processing with image and text streaming.""" try: image = None # Extract image from message or history if message["files"]: image = message["files"][-1]["path"] if isinstance(message["files"][-1], dict) else message["files"][-1] else: for hist in history: if isinstance(hist[0], tuple): image = hist[0][0] if not image: return "Error: Please upload an image for LLaVA to work." # Prepare inputs image = Image.open(image) prompt = f"<|start_header_id|>user<|end_header_id|>\n\n\n{message['text']}<|eot_id|>" inputs = processor(prompt, image, return_tensors="pt").to(model.device, dtype=torch.float16) # Stream text generation streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" time.sleep(0.5) # Allow some time for initial generation # Stream the generated response for new_text in streamer: if "<|eot_id|>" in new_text: new_text = new_text.split("<|eot_id|>")[0] buffer += new_text yield buffer except Exception as e: yield f"Error: {str(e)}" # Define Gradio interface components chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1) chat_input = gr.MultimodalTextbox( interactive=True, file_types=["image"], placeholder="Enter message or upload a file...", show_label=False ) with gr.Blocks(fill_height=True) as demo: gr.ChatInterface( fn=bot_streaming, title="LLaVA Llama-3-8B", examples=[ {"text": "What is on the flower?", "files": ["./bee.jpg"]}, {"text": "How to make this pastry?", "files": ["./baklava.png"]} ], description=( "Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). " "Upload an image and start chatting about it, or simply try one of the examples below. " "If you don't upload an image, you will receive an error." ), stop_btn="Stop Generation", multimodal=True, textbox=chat_input, chatbot=chatbot, ) # Launch the Gradio app demo.queue(api_open=False) demo.launch(show_api=False, share=False)