TusharGoel's picture
Update app.py
b339a29
raw
history blame
1.23 kB
import gradio as gr
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, LayoutLMv3ImageProcessor
model_name = "TusharGoel/LiLT-Document-QA"
tokenizer = AutoTokenizer.from_pretrained(model_name, apply_ocr = True)
image_processor = LayoutLMv3ImageProcessor()
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
model.eval()
def qna(image, question):
res = image_processor(image, apply_ocr = True)
words = res["words"][0]
boxes = res["boxes"][0]
encoding = tokenizer(question, words, boxes = boxes, return_token_type_ids=True, return_tensors="pt", truncation=True, padding="max_length")
word_ids = encoding.word_ids(0)
outputs = model(**encoding)
start_scores = outputs.start_logits
end_scores = outputs.end_logits
start, end = word_ids[start_scores.argmax(-1).item()], word_ids[end_scores.argmax(-1).item()]
answer = " ".join(words[start : end + 1])
return answer
img = gr.Image(source="upload", label="Image")
question = gr.Text(label="Question")
label = gr.Label(label="label")
iface = gr.Interface(fn=qna, inputs=[img, question], outputs=label, title="LiLT - Document Question Answering", allow_duplication=True)
iface.launch()