File size: 3,623 Bytes
85ac990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0993d5e
 
85ac990
 
 
 
 
 
 
 
0993d5e
85ac990
0993d5e
85ac990
0993d5e
85ac990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from __future__ import annotations

from pathlib import Path
from typing import Literal

import click

__all__ = ["cli_wrapper"]

DONE_STR = click.style("DONE", fg="green")


@click.group()
def cli() -> None: ...


@cli.command()
@click.option(
    "--model",
    "model_path",
    required=True,
    help="Path to the trained model",
    type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.option(
    "--share/--no-share",
    default=False,
    help="Whether to create a shareable link",
)
def gui(model_path: Path, share: bool) -> None:
    """Launch the Gradio GUI"""
    from app.gui import launch_gui

    launch_gui(model_path, share)


@cli.command()
@click.option(
    "--model",
    "model_path",
    required=True,
    help="Path to the trained model",
    type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.argument("text", nargs=-1)
def predict(model_path: Path, text: list[str]) -> None:
    """Perform sentiment analysis on the provided text.

    Note: Piped input takes precedence over the text argument
    """
    import sys

    import joblib

    text = " ".join(text).strip()
    if not sys.stdin.isatty():
        piped_text = sys.stdin.read().strip()
        text = piped_text or text

    if not text:
        msg = "No text provided"
        raise click.UsageError(msg)

    click.echo("Loading model... ", nl=False)
    model = joblib.load(model_path)
    click.echo(DONE_STR)

    click.echo("Performing sentiment analysis... ", nl=False)
    prediction = model.predict([text])[0]
    if prediction == 0:
        sentiment = click.style("NEGATIVE", fg="red")
    elif prediction == 1:
        sentiment = click.style("POSITIVE", fg="green")
    else:
        sentiment = click.style("NEUTRAL", fg="yellow")
    click.echo(sentiment)


@cli.command()
@click.option(
    "--dataset",
    required=True,
    help="Dataset to train the model on",
    type=click.Choice(["sentiment140", "amazonreviews", "imdb50k"]),
)
@click.option(
    "--max-features",
    default=20000,
    help="Maximum number of features",
    show_default=True,
    type=click.IntRange(1, None),
)
@click.option(
    "--seed",
    default=42,
    help="Random seed (-1 for random seed)",
    show_default=True,
    type=click.IntRange(-1, None),
)
def train(
    dataset: Literal["sentiment140", "amazonreviews", "imdb50k"],
    max_features: int,
    seed: int,
) -> None:
    """Train the model on the provided dataset"""
    import joblib

    from app.constants import MODELS_DIR
    from app.model import create_model, load_data, train_model

    model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
    if model_path.exists():
        click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)

    click.echo("Preprocessing dataset... ", nl=False)
    text_data, label_data = load_data(dataset)
    click.echo(DONE_STR)

    click.echo("Creating model... ", nl=False)
    model = create_model(max_features, seed=None if seed == -1 else seed)
    click.echo(DONE_STR)

    click.echo("Training model... ", nl=False)
    accuracy = train_model(model, text_data, label_data)
    joblib.dump(model, model_path)
    click.echo(DONE_STR)

    click.echo("Model accuracy: ")
    click.secho(f"{accuracy:.2%}", fg="blue")

    # TODO: Add hyperparameter options
    # TODO: Random/grid search for finding best classifier and hyperparameters


def cli_wrapper() -> None:
    cli(max_content_width=120)


if __name__ == "__main__":
    cli_wrapper()