Spaces:
Sleeping
Sleeping
File size: 7,309 Bytes
667fe9d b0ade1a 667fe9d a092d54 85ac990 b0ade1a 667fe9d a092d54 667fe9d b0ade1a 667fe9d a092d54 2c1f9dd 85ac990 2c1f9dd b0ade1a 2c1f9dd 3854a1f 2c1f9dd a092d54 667fe9d 85ac990 a092d54 667fe9d 85ac990 a092d54 85ac990 a092d54 667fe9d b0ade1a 8b10b79 b0ade1a 8b10b79 b0ade1a 8b10b79 b0ade1a 8b10b79 b0ade1a 85ac990 b0ade1a 85ac990 b0ade1a 3854a1f 8b10b79 2c1f9dd 8471e78 85ac990 a092d54 85ac990 2c1f9dd 85ac990 b0ade1a 3854a1f 8b10b79 2c1f9dd 8471e78 85ac990 a092d54 b0ade1a 85ac990 b0ade1a 85ac990 2c1f9dd 85ac990 b0ade1a 667fe9d 8b10b79 b0ade1a 447f97e b0ade1a cc21abf b0ade1a 5a2db0a 2c1f9dd b0ade1a a092d54 18cc46a 5a2db0a 2c1f9dd a092d54 18cc46a 5a2db0a b0ade1a 5a2db0a 2c1f9dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from __future__ import annotations
import warnings
from typing import TYPE_CHECKING, Literal, Sequence
import numpy as np
from joblib import Memory
from sklearn.exceptions import ConvergenceWarning
from sklearn.feature_extraction.text import CountVectorizer, HashingVectorizer, TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV, cross_val_score, train_test_split
from sklearn.pipeline import Pipeline
from tqdm import tqdm
from app.constants import CACHE_DIR
from app.data import tokenize
if TYPE_CHECKING:
from sklearn.base import BaseEstimator, TransformerMixin
__all__ = ["train_model", "evaluate_model", "infer_model"]
def _identity(x: list[str]) -> list[str]:
"""Identity function for use in TfidfVectorizer.
Args:
x: Input data
Returns:
Unchanged input data
"""
return x
def _get_vectorizer(
name: Literal["tfidf", "count", "hashing"],
n_features: int,
min_df: float = 0.1,
ngram: tuple[int, int] = (1, 2),
) -> TransformerMixin:
"""Get the appropriate vectorizer.
Args:
name: Type of vectorizer
n_features: Maximum number of features
min_df: Minimum document frequency (ignored for hashing)
ngram: N-gram range [min_n, max_n]
Returns:
Vectorizer instance
Raises:
ValueError: If the vectorizer is not recognized
"""
shared_params = {
"ngram_range": ngram,
# disable text processing
"tokenizer": _identity,
"preprocessor": _identity,
"lowercase": False,
"token_pattern": None,
}
match name:
case "tfidf":
return TfidfVectorizer(
max_features=n_features,
min_df=min_df,
**shared_params,
)
case "count":
return CountVectorizer(
max_features=n_features,
min_df=min_df,
**shared_params,
)
case "hashing":
if n_features < 2**15:
warnings.warn(
"HashingVectorizer may perform poorly with small n_features, default is 2^20.",
stacklevel=2,
)
return HashingVectorizer(
n_features=n_features,
**shared_params,
)
case _:
msg = f"Unknown vectorizer: {name}"
raise ValueError(msg)
def train_model(
token_data: Sequence[Sequence[str]],
label_data: list[int],
vectorizer: Literal["tfidf", "count", "hashing"],
max_features: int,
min_df: float = 0.1,
folds: int = 5,
n_jobs: int = 4,
seed: int = 42,
) -> tuple[BaseEstimator, float]:
"""Train the sentiment analysis model.
Args:
token_data: Tokenized text data
label_data: Label data
vectorizer: Which vectorizer to use
max_features: Maximum number of features
min_df: Minimum document frequency (ignored for hashing)
folds: Number of cross-validation folds
n_jobs: Number of parallel jobs
seed: Random seed (None for random seed)
Returns:
Trained model and accuracy
Raises:
ValueError: If the vectorizer is not recognized
"""
rs = None if seed == -1 else seed
text_train, text_test, label_train, label_test = train_test_split(
token_data,
label_data,
test_size=0.2,
random_state=rs,
)
vectorizer = _get_vectorizer(vectorizer, max_features, min_df)
classifiers = [
(LogisticRegression(max_iter=1000, random_state=rs), {"C": np.logspace(-4, 4, 20)}),
# (LinearSVC(max_iter=10000, random_state=rs), {"C": np.logspace(-4, 4, 20)}),
# (KNeighborsClassifier(), {"n_neighbors": np.arange(1, 10)}),
# (RandomForestClassifier(random_state=rs), {"n_estimators": np.arange(50, 500, 50)}),
# (
# VotingClassifier(
# estimators=[
# ("lr", LogisticRegression(max_iter=1000, random_state=rs)),
# ("knn", KNeighborsClassifier()),
# ("rf", RandomForestClassifier(random_state=rs)),
# ],
# ),
# {
# "lr__C": np.logspace(-4, 4, 20),
# "knn__n_neighbors": np.arange(1, 10),
# "rf__n_estimators": np.arange(50, 500, 50),
# },
# ),
]
models = []
for clf, param_dist in (pbar := tqdm(classifiers, unit="clf")):
param_dist = {f"classifier__{k}": v for k, v in param_dist.items()}
model = Pipeline(
[("vectorizer", vectorizer), ("classifier", clf)],
memory=Memory(CACHE_DIR, verbose=0),
)
search = RandomizedSearchCV(
model,
param_dist,
cv=folds,
random_state=rs,
n_jobs=n_jobs,
# verbose=2,
scoring="accuracy",
n_iter=10,
)
pbar.set_description(f"Searching for {clf.__class__.__name__}")
with warnings.catch_warnings():
warnings.filterwarnings("once", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=UserWarning, message="Persisting input arguments took")
search.fit(text_train, label_train)
best_model = search.best_estimator_
acc = best_model.score(text_test, label_test)
models.append((best_model, acc))
print("Final results:")
print("--------------")
print("\n".join(f"{model.named_steps['classifier'].__class__.__name__}: {acc:.2%}" for model, acc in models))
best_model, best_acc = max(models, key=lambda x: x[1])
print(f"Settled on {best_model.named_steps['classifier'].__class__.__name__}")
return best_model, best_acc
def evaluate_model(
model: BaseEstimator,
token_data: Sequence[Sequence[str]],
label_data: list[int],
folds: int = 5,
n_jobs: int = 4,
) -> tuple[float, float]:
"""Evaluate the model using cross-validation.
Args:
model: Trained model
token_data: Tokenized text data
label_data: Label data
folds: Number of cross-validation folds
n_jobs: Number of parallel jobs
Returns:
Mean accuracy and standard deviation
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
scores = cross_val_score(
model,
token_data,
label_data,
cv=folds,
scoring="accuracy",
n_jobs=n_jobs,
verbose=2,
)
return scores.mean(), scores.std()
def infer_model(
model: BaseEstimator,
text_data: list[str],
batch_size: int = 32,
n_jobs: int = 4,
) -> list[int]:
"""Predict the sentiment of the provided text documents.
Args:
model: Trained model
text_data: Text data
batch_size: Batch size for tokenization
n_jobs: Number of parallel jobs
Returns:
Predicted sentiments
"""
tokens = tokenize(
text_data,
batch_size=batch_size,
n_jobs=n_jobs,
show_progress=False,
)
return model.predict(tokens)
|