File size: 5,468 Bytes
667fe9d
 
 
 
a092d54
7ce074d
85ac990
 
a092d54
667fe9d
a092d54
667fe9d
a092d54
667fe9d
a092d54
85ac990
a092d54
85ac990
7ce074d
 
 
 
 
 
 
 
 
85ac990
a092d54
 
85ac990
 
 
 
a092d54
 
 
 
85ac990
a092d54
 
 
85ac990
a092d54
85ac990
 
a092d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ac990
a092d54
 
85ac990
a092d54
 
 
85ac990
a092d54
 
 
85ac990
a092d54
 
85ac990
a092d54
 
 
85ac990
 
a092d54
 
667fe9d
85ac990
a092d54
667fe9d
85ac990
a092d54
85ac990
a092d54
667fe9d
 
85ac990
 
 
204391c
667fe9d
85ac990
667fe9d
85ac990
 
 
204391c
667fe9d
85ac990
 
 
 
667fe9d
a092d54
204391c
a092d54
 
 
 
 
 
 
 
 
 
204391c
0ca5366
667fe9d
85ac990
204391c
667fe9d
 
 
85ac990
a092d54
85ac990
 
 
a092d54
85ac990
 
 
 
 
 
 
 
 
a092d54
85ac990
 
 
 
 
 
667fe9d
 
a092d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
667fe9d
85ac990
a092d54
 
667fe9d
a092d54
 
5a2db0a
 
 
 
a092d54
 
 
5a2db0a
 
 
 
 
a092d54
 
 
5a2db0a
 
 
 
 
 
a092d54
 
 
5a2db0a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from __future__ import annotations

import warnings

import numpy as np
import spacy
from joblib import Memory
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV, cross_val_score, train_test_split
from sklearn.pipeline import Pipeline
from tqdm import tqdm

from app.constants import CACHE_DIR

__all__ = ["create_model", "train_model", "evaluate_model"]

try:
    nlp = spacy.load("en_core_web_sm", disable=["tok2vec", "parser", "ner"])
except OSError:
    print("Downloading spaCy model...")

    from spacy.cli import download as spacy_download

    spacy_download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm", disable=["tok2vec", "parser", "ner"])


class TextTokenizer(BaseEstimator, TransformerMixin):
    def __init__(
        self,
        *,
        character_threshold: int = 2,
        batch_size: int = 1024,
        n_jobs: int = 8,
        progress: bool = True,
    ) -> None:
        self.character_threshold = character_threshold
        self.batch_size = batch_size
        self.n_jobs = n_jobs
        self.progress = progress

    def fit(self, _data: list[str], _labels: list[int] | None = None) -> TextTokenizer:
        return self

    def transform(self, data: list[str]) -> list[list[str]]:
        tokenized = []
        for doc in tqdm(
            nlp.pipe(data, batch_size=self.batch_size, n_process=self.n_jobs),
            total=len(data),
            disable=not self.progress,
        ):
            tokens = []
            for token in doc:
                # Ignore stop words and punctuation
                if token.is_stop or token.is_punct:
                    continue
                # Ignore emails, URLs and numbers
                if token.like_email or token.like_email or token.like_num:
                    continue

                # Lemmatize and lowercase
                tok = token.lemma_.lower().strip()

                # Format hashtags
                if tok.startswith("#"):
                    tok = tok[1:]

                # Ignore short and non-alphanumeric tokens
                if len(tok) < self.character_threshold or not tok.isalnum():
                    continue

                # TODO: Emoticons and emojis
                # TODO: Spelling correction

                tokens.append(tok)
            tokenized.append(tokens)
        return tokenized


def identity(x: list[str]) -> list[str]:
    """Identity function for use in TfidfVectorizer.

    Args:
        x: Input data

    Returns:
        Unchanged input data
    """
    return x


def create_model(
    max_features: int,
    seed: int | None = None,
    verbose: bool = False,
) -> Pipeline:
    """Create a sentiment analysis model.

    Args:
        max_features: Maximum number of features
        seed: Random seed (None for random seed)
        verbose: Whether to log progress during training

    Returns:
        Untrained model
    """
    return Pipeline(
        [
            ("tokenizer", TextTokenizer(progress=True)),
            (
                "vectorizer",
                TfidfVectorizer(
                    max_features=max_features,
                    ngram_range=(1, 2),
                    # disable text processing
                    tokenizer=identity,
                    preprocessor=identity,
                    lowercase=False,
                    token_pattern=None,
                ),
            ),
            ("classifier", LogisticRegression(max_iter=1000, random_state=seed)),
        ],
        memory=Memory(CACHE_DIR, verbose=0),
        verbose=verbose,
    )


def train_model(
    model: BaseEstimator,
    text_data: list[str],
    label_data: list[int],
    seed: int = 42,
) -> tuple[BaseEstimator, float]:
    """Train the sentiment analysis model.

    Args:
        model: Untrained model
        text_data: Text data
        label_data: Label data
        seed: Random seed (None for random seed)

    Returns:
        Trained model and accuracy
    """
    text_train, text_test, label_train, label_test = train_test_split(
        text_data,
        label_data,
        test_size=0.2,
        random_state=seed,
    )

    param_distributions = {
        "classifier__C": np.logspace(-4, 4, 20),
        "classifier__penalty": ["l1", "l2"],
    }

    search = RandomizedSearchCV(
        model,
        param_distributions,
        n_iter=10,
        cv=5,
        scoring="accuracy",
        random_state=seed,
        n_jobs=-1,
    )

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        # model.fit(text_train, label_train)
        search.fit(text_train, label_train)

    best_model = search.best_estimator_
    return best_model, best_model.score(text_test, label_test)


def evaluate_model(
    model: Pipeline,
    text_data: list[str],
    label_data: list[int],
    folds: int = 5,
) -> tuple[float, float]:
    """Evaluate the model using cross-validation.

    Args:
        model: Trained model
        text_data: Text data
        label_data: Label data
        folds: Number of cross-validation folds

    Returns:
        Mean accuracy and standard deviation
    """
    scores = cross_val_score(
        model,
        text_data,
        label_data,
        cv=folds,
        scoring="accuracy",
    )
    return scores.mean(), scores.std()