Spaces:
Running
Running
File size: 1,268 Bytes
667fe9d 85ac990 667fe9d 85ac990 667fe9d 85ac990 667fe9d 85ac990 667fe9d 85ac990 667fe9d 85ac990 667fe9d 85ac990 667fe9d 85ac990 667fe9d 85ac990 667fe9d 85ac990 667fe9d 85ac990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
from __future__ import annotations
import os
from functools import lru_cache
from typing import TYPE_CHECKING
import gradio as gr
import joblib
if TYPE_CHECKING:
from sklearn.pipeline import Pipeline
__all__ = ["launch_gui"]
POSITIVE_LABEL = "Positive π"
NEUTRAL_LABEL = "Neutral π"
NEGATIVE_LABEL = "Negative π€"
@lru_cache(maxsize=1)
def load_model() -> Pipeline:
"""Load the trained model and cache it."""
model_path = os.environ.get("MODEL_PATH", None)
if model_path is None:
msg = "MODEL_PATH environment variable not set"
raise ValueError(msg)
return joblib.load(model_path)
def sentiment_analysis(text: str) -> str:
"""Perform sentiment analysis on the provided text."""
model = load_model()
prediction = model.predict([text])[0]
if prediction == 0:
return NEGATIVE_LABEL
if prediction == 1:
return POSITIVE_LABEL
return NEUTRAL_LABEL
demo = gr.Interface(
fn=sentiment_analysis,
inputs="text",
outputs="label",
title="Sentiment Analysis",
)
def launch_gui(model_path: str, share: bool) -> None:
"""Launch the Gradio GUI."""
os.environ["MODEL_PATH"] = model_path
demo.launch(share=share)
if __name__ == "__main__":
demo.launch()
|