Spaces:
Sleeping
Sleeping
File size: 3,270 Bytes
85ac990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sentiment Analysis"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from __future__ import annotations\n",
"\n",
"import re\n",
"from functools import cache\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import seaborn as sns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data: pd.DataFrame = None # TODO: load dataset\n",
"stopwords: set[str] = None # TODO: load stopwords"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explore the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Plot the distribution\n",
"_, ax = plt.subplots(figsize=(6, 4))\n",
"data[\"sentiment\"].value_counts().plot(kind=\"bar\", ax=ax)\n",
"ax.set_xticklabels([\"Negative\", \"Positive\"], rotation=0)\n",
"ax.set_xlabel(\"Sentiment\")\n",
"ax.grid(False)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"@cache\n",
"def extract_words(text: str) -> list[str]:\n",
" return re.findall(r\"(\\b[^\\s]+\\b)\", text.lower())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Extract words and count them\n",
"words = data[\"text\"].apply(extract_words).explode()\n",
"word_counts = words.value_counts().reset_index()\n",
"word_counts.columns = [\"word\", \"count\"]\n",
"word_counts.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Plot the most common words\n",
"_, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))\n",
"\n",
"sns.barplot(data=word_counts.head(10), x=\"count\", y=\"word\", ax=ax1)\n",
"ax1.set_title(\"Most common words\")\n",
"ax1.grid(False)\n",
"ax1.tick_params(axis=\"x\", rotation=45)\n",
"\n",
"ax2.set_title(\"Most common words (excluding stopwords)\")\n",
"sns.barplot(\n",
" data=word_counts[~word_counts[\"word\"].isin(stopwords)].head(10),\n",
" x=\"count\",\n",
" y=\"word\",\n",
" ax=ax2,\n",
")\n",
"ax2.grid(False)\n",
"ax2.tick_params(axis=\"x\", rotation=45)\n",
"ax2.set_ylabel(\"\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Find best classifier"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Find best hyperparameters"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|