File size: 7,338 Bytes
667fe9d
 
b0ade1a
 
667fe9d
a092d54
85ac990
b0ade1a
 
667fe9d
a092d54
667fe9d
b0ade1a
 
667fe9d
a092d54
2c1f9dd
85ac990
2c1f9dd
b0ade1a
2c1f9dd
3854a1f
2c1f9dd
 
 
a092d54
667fe9d
85ac990
a092d54
667fe9d
85ac990
a092d54
85ac990
a092d54
667fe9d
 
b0ade1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ac990
b0ade1a
85ac990
b0ade1a
3854a1f
2c1f9dd
8471e78
85ac990
a092d54
85ac990
 
 
2c1f9dd
85ac990
b0ade1a
3854a1f
2c1f9dd
8471e78
85ac990
 
 
a092d54
b0ade1a
 
 
85ac990
b0ade1a
 
85ac990
2c1f9dd
85ac990
 
b0ade1a
667fe9d
 
b0ade1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a2db0a
 
 
2c1f9dd
b0ade1a
a092d54
 
18cc46a
5a2db0a
 
 
 
 
2c1f9dd
a092d54
 
18cc46a
5a2db0a
 
 
 
b0ade1a
 
 
 
 
 
 
 
 
 
 
5a2db0a
2c1f9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from __future__ import annotations

import warnings
from typing import TYPE_CHECKING, Literal, Sequence

import numpy as np
from joblib import Memory
from sklearn.exceptions import ConvergenceWarning
from sklearn.feature_extraction.text import CountVectorizer, HashingVectorizer, TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV, cross_val_score, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from tqdm import tqdm

from app.constants import CACHE_DIR
from app.data import tokenize

if TYPE_CHECKING:
    from sklearn.base import BaseEstimator, TransformerMixin

__all__ = ["train_model", "evaluate_model", "infer_model"]


def _identity(x: list[str]) -> list[str]:
    """Identity function for use in TfidfVectorizer.

    Args:
        x: Input data

    Returns:
        Unchanged input data
    """
    return x


def _get_vectorizer(
    name: Literal["tfidf", "count", "hashing"],
    n_features: int,
    df: tuple[float, float] = (0.1, 0.9),
    ngram: tuple[int, int] = (1, 2),
) -> TransformerMixin:
    """Get the appropriate vectorizer.

    Args:
        name: Type of vectorizer
        n_features: Maximum number of features
        df: Document frequency range [min_df, max_df] (ignored for HashingVectorizer)
        ngram: N-gram range [min_n, max_n]

    Returns:
        Vectorizer instance

    Raises:
        ValueError: If the vectorizer is not recognized
    """
    shared_params = {
        "ngram_range": ngram,
        # disable text processing
        "tokenizer": _identity,
        "preprocessor": _identity,
        "lowercase": False,
        "token_pattern": None,
    }

    match name:
        case "tfidf":
            return TfidfVectorizer(
                max_features=n_features,
                min_df=df[0],
                max_df=df[1],
                **shared_params,
            )
        case "count":
            return CountVectorizer(
                max_features=n_features,
                min_df=df[0],
                max_df=df[1],
                **shared_params,
            )
        case "hashing":
            if n_features < 2**15:
                warnings.warn(
                    "HashingVectorizer may perform poorly with small n_features, default is 2^20.",
                    stacklevel=2,
                )

            return HashingVectorizer(
                n_features=n_features,
                **shared_params,
            )
        case _:
            msg = f"Unknown vectorizer: {name}"
            raise ValueError(msg)


def train_model(
    token_data: Sequence[Sequence[str]],
    label_data: list[int],
    vectorizer: Literal["tfidf", "count", "hashing"],
    max_features: int,
    folds: int = 5,
    n_jobs: int = 4,
    seed: int = 42,
) -> tuple[BaseEstimator, float]:
    """Train the sentiment analysis model.

    Args:
        token_data: Tokenized text data
        label_data: Label data
        vectorizer: Which vectorizer to use
        max_features: Maximum number of features
        folds: Number of cross-validation folds
        n_jobs: Number of parallel jobs
        seed: Random seed (None for random seed)

    Returns:
        Trained model and accuracy

    Raises:
        ValueError: If the vectorizer is not recognized
    """
    rs = None if seed == -1 else seed

    text_train, text_test, label_train, label_test = train_test_split(
        token_data,
        label_data,
        test_size=0.2,
        random_state=rs,
    )

    vectorizer = _get_vectorizer(vectorizer, max_features)
    classifiers = [
        (LogisticRegression(max_iter=1000, random_state=rs), {"C": np.logspace(-4, 4, 20)}),
        (LinearSVC(max_iter=10000, random_state=rs), {"C": np.logspace(-4, 4, 20)}),
        # (KNeighborsClassifier(), {"n_neighbors": np.arange(1, 10)}),
        # (RandomForestClassifier(random_state=rs), {"n_estimators": np.arange(50, 500, 50)}),
        # (
        #     VotingClassifier(
        #         estimators=[
        #             ("lr", LogisticRegression(max_iter=1000, random_state=rs)),
        #             ("knn", KNeighborsClassifier()),
        #             ("rf", RandomForestClassifier(random_state=rs)),
        #         ],
        #     ),
        #     {
        #         "lr__C": np.logspace(-4, 4, 20),
        #         "knn__n_neighbors": np.arange(1, 10),
        #         "rf__n_estimators": np.arange(50, 500, 50),
        #     },
        # ),
    ]

    models = []
    for clf, param_dist in (pbar := tqdm(classifiers, unit="clf")):
        param_dist = {f"classifier__{k}": v for k, v in param_dist.items()}

        model = Pipeline(
            [("vectorizer", vectorizer), ("classifier", clf)],
            memory=Memory(CACHE_DIR, verbose=0),
        )

        search = RandomizedSearchCV(
            model,
            param_dist,
            cv=folds,
            random_state=rs,
            n_jobs=n_jobs,
            # verbose=2,
            scoring="accuracy",
            n_iter=7,
        )

        pbar.set_description(f"Searching for {clf.__class__.__name__}")

        with warnings.catch_warnings():
            warnings.filterwarnings("once", category=ConvergenceWarning)
            warnings.filterwarnings("ignore", category=UserWarning, message="Persisting input arguments took")

            search.fit(text_train, label_train)

        best_model = search.best_estimator_
        acc = best_model.score(text_test, label_test)
        models.append((best_model, acc))

    print("Final results:")
    print("--------------")
    print("\n".join(f"{model.named_steps['classifier'].__class__.__name__}: {acc:.2%}" for model, acc in models))

    best_model, best_acc = max(models, key=lambda x: x[1])
    print(f"Settled on {best_model.named_steps['classifier'].__class__.__name__}")
    return best_model, best_acc


def evaluate_model(
    model: BaseEstimator,
    token_data: Sequence[Sequence[str]],
    label_data: list[int],
    folds: int = 5,
    n_jobs: int = 4,
) -> tuple[float, float]:
    """Evaluate the model using cross-validation.

    Args:
        model: Trained model
        token_data: Tokenized text data
        label_data: Label data
        folds: Number of cross-validation folds
        n_jobs: Number of parallel jobs

    Returns:
        Mean accuracy and standard deviation
    """
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=UserWarning)
        scores = cross_val_score(
            model,
            token_data,
            label_data,
            cv=folds,
            scoring="accuracy",
            n_jobs=n_jobs,
            verbose=2,
        )
    return scores.mean(), scores.std()


def infer_model(
    model: BaseEstimator,
    text_data: list[str],
    batch_size: int = 32,
    n_jobs: int = 4,
) -> list[int]:
    """Predict the sentiment of the provided text documents.

    Args:
        model: Trained model
        text_data: Text data
        batch_size: Batch size for tokenization
        n_jobs: Number of parallel jobs

    Returns:
        Predicted sentiments
    """
    tokens = tokenize(
        text_data,
        batch_size=batch_size,
        n_jobs=n_jobs,
        show_progress=False,
    )
    return model.predict(tokens)