Tymec's picture
Create model in train_model
3854a1f
raw
history blame
4.23 kB
from __future__ import annotations
import os
from typing import TYPE_CHECKING
import numpy as np
from joblib import Memory
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV, cross_val_score, train_test_split
from sklearn.pipeline import Pipeline
from app.constants import CACHE_DIR
from app.data import tokenize
if TYPE_CHECKING:
from sklearn.base import BaseEstimator
__all__ = ["train_model", "evaluate_model", "infer_model"]
def _identity(x: list[str]) -> list[str]:
"""Identity function for use in TfidfVectorizer.
Args:
x: Input data
Returns:
Unchanged input data
"""
return x
def train_model(
token_data: list[str],
label_data: list[int],
max_features: int,
folds: int = 5,
seed: int = 42,
verbose: bool = False,
) -> tuple[BaseEstimator, float]:
"""Train the sentiment analysis model.
Args:
model: Untrained model
token_data: Tokenized text data
label_data: Label data
max_features: Maximum number of features
folds: Number of cross-validation folds
seed: Random seed (None for random seed)
verbose: Whether to output additional information
Returns:
Trained model and accuracy
"""
text_train, text_test, label_train, label_test = train_test_split(
token_data,
label_data,
test_size=0.2,
random_state=seed,
)
param_distributions = {
"classifier__C": np.logspace(-4, 4, 20),
"classifier__solver": ["liblinear", "saga"],
}
model = Pipeline(
[
(
"vectorizer",
TfidfVectorizer(
max_features=max_features,
ngram_range=(1, 2),
# disable text processing
tokenizer=_identity,
preprocessor=_identity,
lowercase=False,
token_pattern=None,
),
),
(
"classifier",
LogisticRegression(
max_iter=1000,
random_state=None if seed == -1 else seed,
),
),
],
memory=Memory(CACHE_DIR, verbose=0),
verbose=verbose,
)
search = RandomizedSearchCV(
model,
param_distributions,
n_iter=10,
cv=folds,
scoring="accuracy",
random_state=seed,
n_jobs=-1,
verbose=verbose,
)
# os.environ["PYTHONWARNINGS"] = "ignore"
search.fit(text_train, label_train)
# del os.environ["PYTHONWARNINGS"]
best_model = search.best_estimator_
return best_model, best_model.score(text_test, label_test)
def evaluate_model(
model: BaseEstimator,
token_data: list[str],
label_data: list[int],
folds: int = 5,
verbose: bool = False,
) -> tuple[float, float]:
"""Evaluate the model using cross-validation.
Args:
model: Trained model
token_data: Tokenized text data
label_data: Label data
folds: Number of cross-validation folds
verbose: Whether to output additional information
Returns:
Mean accuracy and standard deviation
"""
os.environ["PYTHONWARNINGS"] = "ignore"
scores = cross_val_score(
model,
token_data,
label_data,
cv=folds,
scoring="accuracy",
n_jobs=-1,
verbose=verbose,
)
del os.environ["PYTHONWARNINGS"]
return scores.mean(), scores.std()
def infer_model(
model: BaseEstimator,
text_data: list[str],
batch_size: int = 32,
n_jobs: int = 4,
) -> list[int]:
"""Predict the sentiment of the provided text documents.
Args:
model: Trained model
text_data: Text data
batch_size: Batch size for tokenization
n_jobs: Number of parallel jobs
Returns:
Predicted sentiments
"""
tokens = tokenize(
text_data,
batch_size=batch_size,
n_jobs=n_jobs,
show_progress=False,
)
return model.predict(tokens)