Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import bz2 | |
import re | |
import warnings | |
from typing import Literal | |
import nltk | |
import pandas as pd | |
from joblib import Memory | |
from nltk.corpus import stopwords | |
from nltk.stem import WordNetLemmatizer | |
from sklearn.base import BaseEstimator, TransformerMixin | |
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.model_selection import cross_val_score, train_test_split | |
from sklearn.pipeline import Pipeline | |
from app.constants import ( | |
AMAZONREVIEWS_PATH, | |
AMAZONREVIEWS_URL, | |
CACHE_DIR, | |
EMOTICON_MAP, | |
IMDB50K_PATH, | |
IMDB50K_URL, | |
SENTIMENT140_PATH, | |
SENTIMENT140_URL, | |
URL_REGEX, | |
) | |
__all__ = ["load_data", "create_model", "train_model", "evaluate_model"] | |
class TextCleaner(BaseEstimator, TransformerMixin): | |
def __init__( | |
self, | |
*, | |
replace_url: bool = True, | |
replace_hashtag: bool = True, | |
replace_emoticon: bool = True, | |
replace_emoji: bool = True, | |
lowercase: bool = True, | |
character_threshold: int = 2, | |
remove_special_characters: bool = True, | |
remove_extra_spaces: bool = True, | |
): | |
self.replace_url = replace_url | |
self.replace_hashtag = replace_hashtag | |
self.replace_emoticon = replace_emoticon | |
self.replace_emoji = replace_emoji | |
self.lowercase = lowercase | |
self.character_threshold = character_threshold | |
self.remove_special_characters = remove_special_characters | |
self.remove_extra_spaces = remove_extra_spaces | |
def fit(self, _data: list[str], _labels: list[int] | None = None) -> TextCleaner: | |
return self | |
def transform(self, data: list[str], _labels: list[int] | None = None) -> list[str]: | |
# Replace URLs, hashtags, emoticons, and emojis | |
data = [re.sub(URL_REGEX, "URL", text) for text in data] if self.replace_url else data | |
data = [re.sub(r"#\w+", "HASHTAG", text) for text in data] if self.replace_hashtag else data | |
# Replace emoticons | |
if self.replace_emoticon: | |
for word, emoticons in EMOTICON_MAP.items(): | |
for emoticon in emoticons: | |
data = [text.replace(emoticon, f"EMOTE_{word}") for text in data] | |
# Basic text cleaning | |
data = [text.lower() for text in data] if self.lowercase else data # Lowercase | |
threshold_pattern = re.compile(rf"\b\w{{1,{self.character_threshold}}}\b") | |
data = ( | |
[re.sub(threshold_pattern, "", text) for text in data] if self.character_threshold > 0 else data | |
) # Remove short words | |
data = ( | |
[re.sub(r"[^a-zA-Z0-9\s]", "", text) for text in data] if self.remove_special_characters else data | |
) # Remove special characters | |
data = [re.sub(r"\s+", " ", text) for text in data] if self.remove_extra_spaces else data # Remove extra spaces | |
# Remove leading and trailing whitespace | |
return [text.strip() for text in data] | |
class TextLemmatizer(BaseEstimator, TransformerMixin): | |
def __init__(self): | |
self.lemmatizer = WordNetLemmatizer() | |
def fit(self, _data: list[str], _labels: list[int] | None = None) -> TextLemmatizer: | |
return self | |
def transform(self, data: list[str], _labels: list[int] | None = None) -> list[str]: | |
return [self.lemmatizer.lemmatize(text) for text in data] | |
def load_sentiment140(include_neutral: bool = False) -> tuple[list[str], list[int]]: | |
"""Load the sentiment140 dataset and make it suitable for use. | |
Args: | |
include_neutral: Whether to include neutral sentiment | |
Returns: | |
Text and label data | |
Raises: | |
FileNotFoundError: If the dataset is not found | |
""" | |
# Check if the dataset exists | |
if not SENTIMENT140_PATH.exists(): | |
msg = ( | |
f"Sentiment140 dataset not found at: '{SENTIMENT140_PATH}'\n" | |
"Please download the dataset from:\n" | |
f"{SENTIMENT140_URL}" | |
) | |
raise FileNotFoundError(msg) | |
# Load the dataset | |
data = pd.read_csv( | |
SENTIMENT140_PATH, | |
encoding="ISO-8859-1", | |
names=[ | |
"target", # 0 = negative, 2 = neutral, 4 = positive | |
"id", # The id of the tweet | |
"date", # The date of the tweet | |
"flag", # The query, NO_QUERY if not present | |
"user", # The user that tweeted | |
"text", # The text of the tweet | |
], | |
) | |
# Ignore rows with neutral sentiment | |
if not include_neutral: | |
data = data[data["target"] != 2] | |
# Map sentiment values | |
data["sentiment"] = data["target"].map( | |
{ | |
0: 0, # Negative | |
4: 1, # Positive | |
2: 2, # Neutral | |
}, | |
) | |
# Return as lists | |
return data["text"].tolist(), data["sentiment"].tolist() | |
def load_amazonreviews(merge: bool = True) -> tuple[list[str], list[int]]: | |
"""Load the amazonreviews dataset and make it suitable for use. | |
Args: | |
merge: Whether to merge the test and train datasets (otherwise ignore test) | |
Returns: | |
Text and label data | |
Raises: | |
FileNotFoundError: If the dataset is not found | |
""" | |
# Check if the dataset exists | |
test_exists = AMAZONREVIEWS_PATH[0].exists() or not merge | |
train_exists = AMAZONREVIEWS_PATH[1].exists() | |
if not (test_exists and train_exists): | |
msg = ( | |
f"Amazonreviews dataset not found at: '{AMAZONREVIEWS_PATH[0]}' and '{AMAZONREVIEWS_PATH[1]}'\n" | |
"Please download the dataset from:\n" | |
f"{AMAZONREVIEWS_URL}" | |
) | |
raise FileNotFoundError(msg) | |
# Load the datasets | |
with bz2.BZ2File(AMAZONREVIEWS_PATH[1]) as train_file: | |
train_data = [line.decode("utf-8") for line in train_file] | |
test_data = [] | |
if merge: | |
with bz2.BZ2File(AMAZONREVIEWS_PATH[0]) as test_file: | |
test_data = [line.decode("utf-8") for line in test_file] | |
# Merge the datasets | |
data = train_data + test_data | |
# Split the data into labels and text | |
labels, texts = zip(*(line.split(" ", 1) for line in data)) | |
# Map sentiment values | |
sentiments = [int(label.split("__label__")[1]) - 1 for label in labels] | |
# Return as lists | |
return texts, sentiments | |
def load_imdb50k() -> tuple[list[str], list[int]]: | |
"""Load the imdb50k dataset and make it suitable for use. | |
Returns: | |
Text and label data | |
Raises: | |
FileNotFoundError: If the dataset is not found | |
""" | |
# Check if the dataset exists | |
if not IMDB50K_PATH.exists(): | |
msg = ( | |
f"IMDB50K dataset not found at: '{IMDB50K_PATH}'\n" | |
"Please download the dataset from:\n" | |
f"{IMDB50K_URL}" | |
) # fmt: off | |
raise FileNotFoundError(msg) | |
# Load the dataset | |
data = pd.read_csv(IMDB50K_PATH) | |
# Map sentiment values | |
data["sentiment"] = data["sentiment"].map( | |
{ | |
"positive": 1, | |
"negative": 0, | |
}, | |
) | |
# Return as lists | |
return data["review"].tolist(), data["sentiment"].tolist() | |
def load_data(dataset: Literal["sentiment140", "amazonreviews", "imdb50k"]) -> tuple[list[str], list[int]]: | |
"""Load and preprocess the specified dataset. | |
Args: | |
dataset: Dataset to load | |
Returns: | |
Text and label data | |
Raises: | |
ValueError: If the dataset is not recognized | |
""" | |
match dataset: | |
case "sentiment140": | |
return load_sentiment140(include_neutral=False) | |
case "amazonreviews": | |
return load_amazonreviews(merge=True) | |
case "imdb50k": | |
return load_imdb50k() | |
case _: | |
msg = f"Unknown dataset: {dataset}" | |
raise ValueError(msg) | |
def create_model( | |
max_features: int, | |
seed: int | None = None, | |
verbose: bool = False, | |
) -> Pipeline: | |
"""Create a sentiment analysis model. | |
Args: | |
max_features: Maximum number of features | |
seed: Random seed (None for random seed) | |
verbose: Whether to log progress during training | |
Returns: | |
Untrained model | |
""" | |
# Download NLTK data if not already downloaded | |
nltk.download("wordnet", quiet=True) | |
nltk.download("stopwords", quiet=True) | |
# Load English stopwords | |
stopwords_en = set(stopwords.words("english")) | |
return Pipeline( | |
[ | |
# Text preprocessing | |
("clean", TextCleaner()), | |
("lemma", TextLemmatizer()), | |
# Preprocess (NOTE: Can be replaced with TfidfVectorizer, but left for clarity) | |
( | |
"vectorize", | |
CountVectorizer(stop_words=stopwords_en, ngram_range=(1, 2), max_features=max_features), | |
), | |
("tfidf", TfidfTransformer()), | |
# Classifier | |
("clf", LogisticRegression(max_iter=1000, random_state=seed)), | |
], | |
memory=Memory(CACHE_DIR, verbose=0), | |
verbose=verbose, | |
) | |
def train_model( | |
model: Pipeline, | |
text_data: list[str], | |
label_data: list[int], | |
seed: int = 42, | |
) -> tuple[float, list[str], list[int]]: | |
"""Train the sentiment analysis model. | |
Args: | |
model: Untrained model | |
text_data: Text data | |
label_data: Label data | |
seed: Random seed (None for random seed) | |
Returns: | |
Model accuracy and test data | |
""" | |
text_train, text_test, label_train, label_test = train_test_split( | |
text_data, | |
label_data, | |
test_size=0.2, | |
random_state=seed, | |
) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
model.fit(text_train, label_train) | |
return model.score(text_test, label_test), text_test, label_test | |
def evaluate_model( | |
model: Pipeline, | |
text_test: list[str], | |
label_test: list[int], | |
cv: int = 5, | |
) -> tuple[float, float]: | |
"""Evaluate the model using cross-validation. | |
Args: | |
model: Trained model | |
text_test: Text data | |
label_test: Label data | |
seed: Random seed (None for random seed) | |
cv: Number of cross-validation folds | |
Returns: | |
Mean accuracy and standard deviation | |
""" | |
scores = cross_val_score( | |
model, | |
text_test, | |
label_test, | |
cv=cv, | |
scoring="accuracy", | |
n_jobs=-1, | |
) | |
return scores.mean(), scores.std() | |