Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
from pathlib import Path | |
from typing import Literal | |
import click | |
__all__ = ["cli_wrapper"] | |
DONE_STR = click.style("DONE", fg="green") | |
def cli() -> None: ... | |
def gui(model_path: Path, share: bool) -> None: | |
"""Launch the Gradio GUI""" | |
import os | |
from app.gui import launch_gui | |
os.environ["MODEL_PATH"] = model_path.as_posix() | |
launch_gui(share) | |
def predict(model_path: Path, text: list[str]) -> None: | |
"""Perform sentiment analysis on the provided text. | |
Note: Piped input takes precedence over the text argument | |
""" | |
import sys | |
import joblib | |
from app.model import infer_model | |
text = " ".join(text).strip() | |
if not sys.stdin.isatty(): | |
piped_text = sys.stdin.read().strip() | |
text = piped_text or text | |
if not text: | |
msg = "No text provided" | |
raise click.UsageError(msg) | |
click.echo("Loading model... ", nl=False) | |
model = joblib.load(model_path) | |
click.echo(DONE_STR) | |
click.echo("Performing sentiment analysis... ", nl=False) | |
prediction = infer_model(model, [text])[0] | |
# prediction = model.predict([text])[0] | |
if prediction == 0: | |
sentiment = click.style("NEGATIVE", fg="red") | |
elif prediction == 1: | |
sentiment = click.style("POSITIVE", fg="green") | |
else: | |
sentiment = click.style("NEUTRAL", fg="yellow") | |
click.echo(sentiment) | |
def evaluate( | |
dataset: Literal["test", "sentiment140", "amazonreviews", "imdb50k"], | |
model_path: Path, | |
cv: int, | |
token_batch_size: int, | |
token_jobs: int, | |
eval_jobs: int, | |
force_cache: bool, | |
) -> None: | |
"""Evaluate the model on the the specified dataset""" | |
import gc | |
import joblib | |
import pandas as pd | |
from app.constants import TOKENIZER_CACHE_PATH | |
from app.data import load_data, tokenize | |
from app.model import evaluate_model | |
from app.utils import deserialize, serialize | |
token_cache_path = TOKENIZER_CACHE_PATH / f"{dataset}_tokenized.pkl" | |
label_cache_path = TOKENIZER_CACHE_PATH / f"{dataset}_labels.pkl" | |
use_cached_data = False | |
if token_cache_path.exists(): | |
use_cached_data = force_cache or click.confirm( | |
f"Found existing tokenized data for '{dataset}'. Use it?", | |
default=True, | |
) | |
if use_cached_data: | |
click.echo("Loading cached data... ", nl=False) | |
token_data = pd.Series(deserialize(token_cache_path)) | |
label_data = joblib.load(label_cache_path) | |
click.echo(DONE_STR) | |
else: | |
click.echo("Loading dataset... ", nl=False) | |
text_data, label_data = load_data(dataset) | |
click.echo(DONE_STR) | |
click.echo("Tokenizing data... ") | |
token_data = tokenize(text_data, batch_size=token_batch_size, n_jobs=token_jobs, show_progress=True) | |
click.echo("Caching tokenized data... ") | |
serialize(token_data, token_cache_path, show_progress=True) | |
joblib.dump(label_data, label_cache_path, compress=3) | |
del text_data | |
gc.collect() | |
click.echo("Size of vocabulary: ", nl=False) | |
vocab = token_data.explode().value_counts() | |
click.secho(str(len(vocab)), fg="blue") | |
click.echo("Loading model... ", nl=False) | |
model = joblib.load(model_path) | |
click.echo(DONE_STR) | |
click.echo("Evaluating model... ", nl=False) | |
acc_mean, acc_std = evaluate_model( | |
model, | |
token_data, | |
label_data, | |
folds=cv, | |
n_jobs=eval_jobs, | |
) | |
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue") | |
def train( | |
dataset: Literal["sentiment140", "amazonreviews", "imdb50k"], | |
vectorizer: Literal["tfidf", "count", "hashing"], | |
max_features: int, | |
min_df: float, | |
cv: int, | |
token_batch_size: int, | |
token_jobs: int, | |
train_jobs: int, | |
seed: int, | |
overwrite: bool, | |
force_cache: bool, | |
) -> None: | |
"""Train the model on the provided dataset""" | |
import gc | |
import joblib | |
import pandas as pd | |
from app.constants import MODEL_DIR, TOKENIZER_CACHE_PATH | |
from app.data import load_data, tokenize | |
from app.model import train_model | |
from app.utils import deserialize, serialize | |
model_path = MODEL_DIR / f"{dataset}_{vectorizer}_ft{max_features}.pkl" | |
if model_path.exists() and not overwrite: | |
click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True) | |
token_cache_path = TOKENIZER_CACHE_PATH / f"{dataset}_tokenized.pkl" | |
label_cache_path = TOKENIZER_CACHE_PATH / f"{dataset}_labels.pkl" | |
use_cached_data = False | |
if token_cache_path.exists(): | |
use_cached_data = force_cache or click.confirm( | |
f"Found existing tokenized data for '{dataset}'. Use it?", | |
default=True, | |
) | |
if use_cached_data: | |
click.echo("Loading cached data... ", nl=False) | |
token_data = pd.Series(deserialize(token_cache_path)) | |
label_data = joblib.load(label_cache_path) | |
click.echo(DONE_STR) | |
else: | |
click.echo("Loading dataset... ", nl=False) | |
text_data, label_data = load_data(dataset) | |
click.echo(DONE_STR) | |
click.echo("Tokenizing data... ") | |
token_data = tokenize(text_data, batch_size=token_batch_size, n_jobs=token_jobs, show_progress=True) | |
click.echo("Caching tokenized data... ") | |
serialize(token_data, token_cache_path, show_progress=True) | |
joblib.dump(label_data, label_cache_path, compress=3) | |
del text_data | |
gc.collect() | |
click.echo("Size of vocabulary: ", nl=False) | |
vocab = token_data.explode().value_counts() | |
click.secho(str(len(vocab)), fg="blue") | |
click.echo("Training model... ") | |
model, accuracy = train_model( | |
token_data, | |
label_data, | |
vectorizer=vectorizer, | |
max_features=max_features, | |
min_df=min_df, | |
folds=cv, | |
n_jobs=train_jobs, | |
seed=seed, | |
) | |
click.echo("Model accuracy: ", nl=False) | |
click.secho(f"{accuracy:.2%}", fg="blue") | |
click.echo("Model saved to: ", nl=False) | |
joblib.dump(model, model_path, compress=3) | |
click.secho(str(model_path), fg="blue") | |
def cli_wrapper() -> None: | |
cli(max_content_width=120) | |
if __name__ == "__main__": | |
cli_wrapper() | |