Tymec's picture
Refactor typing and update tokenization rules
228859a
raw
history blame
7.18 kB
from __future__ import annotations
import bz2
from typing import TYPE_CHECKING, Literal, Sequence
import pandas as pd
import spacy
from tqdm import tqdm
from app.constants import (
AMAZONREVIEWS_PATH,
AMAZONREVIEWS_URL,
IMDB50K_PATH,
IMDB50K_URL,
SENTIMENT140_PATH,
SENTIMENT140_URL,
TEST_DATASET_PATH,
TEST_DATASET_URL,
)
if TYPE_CHECKING:
from spacy.tokens import Doc
__all__ = ["load_data", "tokenize"]
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
print("Downloading spaCy model...")
from spacy.cli import download as spacy_download
spacy_download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
def _lemmatize(doc: Doc, threshold: int = 2) -> Sequence[str]:
"""Lemmatize the provided text using spaCy.
Args:
doc: spaCy document
threshold: Minimum character length of tokens
Returns:
Sequence of lemmatized tokens
"""
return [
token.lemma_.lower().strip()
for token in doc
if not token.is_stop # Ignore stop words
and not token.is_punct # Ignore punctuation
and not token.is_alpha # Ignore non-alphabetic tokens
and not (len(token.lemma_) < threshold) # Ignore short tokens
]
def tokenize(
text_data: Sequence[str],
batch_size: int = 512,
n_jobs: int = 4,
character_threshold: int = 2,
show_progress: bool = True,
) -> Sequence[Sequence[str]]:
"""Tokenize the provided text using spaCy.
Args:
text_data: Text data to tokenize
batch_size: Batch size for tokenization
n_jobs: Number of parallel jobs
character_threshold: Minimum character length of tokens
show_progress: Whether to show a progress bar
Returns:
Tokenized text data
"""
return pd.Series(
[
_lemmatize(doc, character_threshold)
for doc in tqdm(
nlp.pipe(text_data, batch_size=batch_size, n_process=n_jobs, disable=["parser", "ner", "tok2vec"]),
total=len(text_data),
disable=not show_progress,
unit="doc",
)
],
)
def load_sentiment140(include_neutral: bool = False) -> tuple[list[str], list[int]]:
"""Load the sentiment140 dataset and make it suitable for use.
Args:
include_neutral: Whether to include neutral sentiment
Returns:
Text and label data
Raises:
FileNotFoundError: If the dataset is not found
"""
# Check if the dataset exists
if not SENTIMENT140_PATH.exists():
msg = (
f"Sentiment140 dataset not found at: '{SENTIMENT140_PATH}'\n"
"Please download the dataset from:\n"
f"{SENTIMENT140_URL}"
)
raise FileNotFoundError(msg)
# Load the dataset
data = pd.read_csv(
SENTIMENT140_PATH,
encoding="ISO-8859-1",
names=[
"target", # 0 = negative, 2 = neutral, 4 = positive
"id", # The id of the tweet
"date", # The date of the tweet
"flag", # The query, NO_QUERY if not present
"user", # The user that tweeted
"text", # The text of the tweet
],
)
# Ignore rows with neutral sentiment
if not include_neutral:
data = data[data["target"] != 2]
# Map sentiment values
data["sentiment"] = data["target"].map(
{
0: 0, # Negative
4: 1, # Positive
2: 2, # Neutral
},
)
# Return as lists
return data["text"].tolist(), data["sentiment"].tolist()
def load_amazonreviews() -> tuple[list[str], list[int]]:
"""Load the amazonreviews dataset and make it suitable for use.
Returns:
Text and label data
Raises:
FileNotFoundError: If the dataset is not found
"""
# Check if the dataset exists
if not AMAZONREVIEWS_PATH.exists():
msg = (
f"Amazonreviews dataset not found at: '{AMAZONREVIEWS_PATH}'\n"
"Please download the dataset from:\n"
f"{AMAZONREVIEWS_URL}"
)
raise FileNotFoundError(msg)
# Load the dataset
with bz2.BZ2File(AMAZONREVIEWS_PATH) as f:
dataset = [line.decode("utf-8") for line in f]
# Split the data into labels and text
labels, texts = zip(*(line.split(" ", 1) for line in dataset))
# Map sentiment values
sentiments = [int(label.split("__label__")[1]) - 1 for label in labels]
# Return as lists
return texts, sentiments
def load_imdb50k() -> tuple[list[str], list[int]]:
"""Load the imdb50k dataset and make it suitable for use.
Returns:
Text and label data
Raises:
FileNotFoundError: If the dataset is not found
"""
# Check if the dataset exists
if not IMDB50K_PATH.exists():
msg = (
f"IMDB50K dataset not found at: '{IMDB50K_PATH}'\n"
"Please download the dataset from:\n"
f"{IMDB50K_URL}"
) # fmt: off
raise FileNotFoundError(msg)
# Load the dataset
data = pd.read_csv(IMDB50K_PATH)
# Map sentiment values
data["sentiment"] = data["sentiment"].map(
{
"positive": 1,
"negative": 0,
},
)
# Return as lists
return data["review"].tolist(), data["sentiment"].tolist()
def load_test(include_neutral: bool = False) -> tuple[list[str], list[int]]:
"""Load the test dataset and make it suitable for use.
Args:
include_neutral: Whether to include neutral sentiment
Returns:
Text and label data
Raises:
FileNotFoundError: If the dataset is not found
"""
# Check if the dataset exists
if not TEST_DATASET_PATH.exists():
msg = (
f"Test dataset not found at: '{TEST_DATASET_PATH}'\n"
"Please download the dataset from:\n"
f"{TEST_DATASET_URL}"
)
raise FileNotFoundError(msg)
# Load the dataset
data = pd.read_csv(TEST_DATASET_PATH)
# Ignore rows with neutral sentiment
if not include_neutral:
data = data[data["label"] != 1]
# Map sentiment values
data["label"] = data["label"].map(
{
0: 0, # Negative
1: 1, # Neutral
2: 2, # Positive
},
)
# Return as lists
return data["text"].tolist(), data["label"].tolist()
def load_data(dataset: Literal["sentiment140", "amazonreviews", "imdb50k", "test"]) -> tuple[list[str], list[int]]:
"""Load and preprocess the specified dataset.
Args:
dataset: Dataset to load
Returns:
Text and label data
Raises:
ValueError: If the dataset is not recognized
"""
match dataset:
case "sentiment140":
return load_sentiment140(include_neutral=False)
case "amazonreviews":
return load_amazonreviews()
case "imdb50k":
return load_imdb50k()
case "test":
return load_test(include_neutral=False)
case _:
msg = f"Unknown dataset: {dataset}"
raise ValueError(msg)