Spaces:
Sleeping
Sleeping
Chunked serialization
Browse files- Makefile +0 -20
- app/cli.py +37 -21
- app/utils.py +44 -0
Makefile
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
#!/usr/bin/make -f
|
2 |
-
|
3 |
-
default: install
|
4 |
-
|
5 |
-
install:
|
6 |
-
@poetry install --only main
|
7 |
-
@poetry run spacy download en_core_web_sm
|
8 |
-
|
9 |
-
install-dev:
|
10 |
-
@poetry self add poetry-plugin-export
|
11 |
-
@poetry install
|
12 |
-
|
13 |
-
requirements:
|
14 |
-
@poetry export -f requirements.txt --output requirements.txt --without dev
|
15 |
-
@poetry export -f requirements.txt --output requirements-dev.txt
|
16 |
-
|
17 |
-
lint:
|
18 |
-
@poetry run pre-commit run --all-files
|
19 |
-
|
20 |
-
.PHONY: install install-dev requirements gradio lint run
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/cli.py
CHANGED
@@ -136,28 +136,34 @@ def evaluate(
|
|
136 |
from app.constants import CACHE_DIR
|
137 |
from app.data import load_data, tokenize
|
138 |
from app.model import evaluate_model
|
|
|
139 |
|
140 |
cached_data_path = CACHE_DIR / f"{dataset}_tokenized.pkl"
|
141 |
use_cached_data = False
|
142 |
if cached_data_path.exists():
|
143 |
use_cached_data = click.confirm(f"Found existing tokenized data for '{dataset}'. Use it?", default=True)
|
144 |
|
|
|
|
|
|
|
|
|
145 |
if use_cached_data:
|
146 |
click.echo("Loading cached data... ", nl=False)
|
147 |
-
token_data
|
|
|
148 |
click.echo(DONE_STR)
|
149 |
else:
|
150 |
-
click.echo("Loading dataset... ", nl=False)
|
151 |
-
text_data, label_data = load_data(dataset)
|
152 |
-
click.echo(DONE_STR)
|
153 |
-
|
154 |
click.echo("Tokenizing data... ", nl=False)
|
155 |
token_data = tokenize(text_data, batch_size=batch_size, n_jobs=processes, show_progress=True)
|
156 |
-
joblib.dump((token_data, label_data), cached_data_path, compress=3)
|
157 |
click.echo(DONE_STR)
|
158 |
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
click.echo("Loading model... ", nl=False)
|
163 |
model = joblib.load(model_path)
|
@@ -221,9 +227,9 @@ def evaluate(
|
|
221 |
help="Overwrite the model file if it already exists",
|
222 |
)
|
223 |
@click.option(
|
224 |
-
"--
|
225 |
is_flag=True,
|
226 |
-
help="
|
227 |
)
|
228 |
@click.option(
|
229 |
"--verbose",
|
@@ -238,7 +244,7 @@ def train(
|
|
238 |
processes: int,
|
239 |
seed: int,
|
240 |
overwrite: bool,
|
241 |
-
|
242 |
verbose: bool,
|
243 |
) -> None:
|
244 |
"""Train the model on the provided dataset"""
|
@@ -249,6 +255,7 @@ def train(
|
|
249 |
from app.constants import CACHE_DIR, MODELS_DIR
|
250 |
from app.data import load_data, tokenize
|
251 |
from app.model import train_model
|
|
|
252 |
|
253 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
254 |
if model_path.exists() and not overwrite:
|
@@ -256,25 +263,34 @@ def train(
|
|
256 |
|
257 |
cached_data_path = CACHE_DIR / f"{dataset}_tokenized.pkl"
|
258 |
use_cached_data = False
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
if use_cached_data:
|
263 |
click.echo("Loading cached data... ", nl=False)
|
264 |
-
token_data
|
|
|
265 |
click.echo(DONE_STR)
|
266 |
else:
|
267 |
-
click.echo("Loading dataset... ", nl=False)
|
268 |
-
text_data, label_data = load_data(dataset)
|
269 |
-
click.echo(DONE_STR)
|
270 |
-
|
271 |
click.echo("Tokenizing data... ", nl=False)
|
272 |
token_data = tokenize(text_data, batch_size=batch_size, n_jobs=processes, show_progress=True)
|
273 |
-
joblib.dump((token_data, label_data), cached_data_path, compress=3)
|
274 |
click.echo(DONE_STR)
|
275 |
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
click.echo("Training model... ")
|
280 |
model, accuracy = train_model(
|
|
|
136 |
from app.constants import CACHE_DIR
|
137 |
from app.data import load_data, tokenize
|
138 |
from app.model import evaluate_model
|
139 |
+
from app.utils import deserialize, serialize
|
140 |
|
141 |
cached_data_path = CACHE_DIR / f"{dataset}_tokenized.pkl"
|
142 |
use_cached_data = False
|
143 |
if cached_data_path.exists():
|
144 |
use_cached_data = click.confirm(f"Found existing tokenized data for '{dataset}'. Use it?", default=True)
|
145 |
|
146 |
+
click.echo("Loading dataset... ", nl=False)
|
147 |
+
text_data, label_data = load_data(dataset)
|
148 |
+
click.echo(DONE_STR)
|
149 |
+
|
150 |
if use_cached_data:
|
151 |
click.echo("Loading cached data... ", nl=False)
|
152 |
+
# token_data = joblib.load(cached_data_path)
|
153 |
+
token_data = deserialize(cached_data_path)
|
154 |
click.echo(DONE_STR)
|
155 |
else:
|
|
|
|
|
|
|
|
|
156 |
click.echo("Tokenizing data... ", nl=False)
|
157 |
token_data = tokenize(text_data, batch_size=batch_size, n_jobs=processes, show_progress=True)
|
|
|
158 |
click.echo(DONE_STR)
|
159 |
|
160 |
+
click.echo("Caching tokenized data... ", nl=False)
|
161 |
+
# joblib.dump(token_data, cached_data_path, compress=3)
|
162 |
+
serialize(token_data, cached_data_path)
|
163 |
+
click.echo(DONE_STR)
|
164 |
+
|
165 |
+
del text_data
|
166 |
+
gc.collect()
|
167 |
|
168 |
click.echo("Loading model... ", nl=False)
|
169 |
model = joblib.load(model_path)
|
|
|
227 |
help="Overwrite the model file if it already exists",
|
228 |
)
|
229 |
@click.option(
|
230 |
+
"--force-cache",
|
231 |
is_flag=True,
|
232 |
+
help="Always use the cached tokenized data (if available)",
|
233 |
)
|
234 |
@click.option(
|
235 |
"--verbose",
|
|
|
244 |
processes: int,
|
245 |
seed: int,
|
246 |
overwrite: bool,
|
247 |
+
force_cache: bool,
|
248 |
verbose: bool,
|
249 |
) -> None:
|
250 |
"""Train the model on the provided dataset"""
|
|
|
255 |
from app.constants import CACHE_DIR, MODELS_DIR
|
256 |
from app.data import load_data, tokenize
|
257 |
from app.model import train_model
|
258 |
+
from app.utils import deserialize, serialize
|
259 |
|
260 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
261 |
if model_path.exists() and not overwrite:
|
|
|
263 |
|
264 |
cached_data_path = CACHE_DIR / f"{dataset}_tokenized.pkl"
|
265 |
use_cached_data = False
|
266 |
+
|
267 |
+
if cached_data_path.exists():
|
268 |
+
use_cached_data = force_cache or click.confirm(
|
269 |
+
f"Found existing tokenized data for '{dataset}'. Use it?",
|
270 |
+
default=True,
|
271 |
+
)
|
272 |
+
|
273 |
+
click.echo("Loading dataset... ", nl=False)
|
274 |
+
text_data, label_data = load_data(dataset)
|
275 |
+
click.echo(DONE_STR)
|
276 |
|
277 |
if use_cached_data:
|
278 |
click.echo("Loading cached data... ", nl=False)
|
279 |
+
# token_data = joblib.load(cached_data_path)
|
280 |
+
token_data = deserialize(cached_data_path)
|
281 |
click.echo(DONE_STR)
|
282 |
else:
|
|
|
|
|
|
|
|
|
283 |
click.echo("Tokenizing data... ", nl=False)
|
284 |
token_data = tokenize(text_data, batch_size=batch_size, n_jobs=processes, show_progress=True)
|
|
|
285 |
click.echo(DONE_STR)
|
286 |
|
287 |
+
click.echo("Caching tokenized data... ", nl=False)
|
288 |
+
# joblib.dump(token_data, cached_data_path, compress=3)
|
289 |
+
serialize(token_data, cached_data_path)
|
290 |
+
click.echo(DONE_STR)
|
291 |
+
|
292 |
+
del text_data
|
293 |
+
gc.collect()
|
294 |
|
295 |
click.echo("Training model... ")
|
296 |
model, accuracy = train_model(
|
app/utils.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import TYPE_CHECKING
|
4 |
+
|
5 |
+
import joblib
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
if TYPE_CHECKING:
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
__all__ = ["serialize", "deserialize"]
|
12 |
+
|
13 |
+
|
14 |
+
def serialize(data: list[list[str]], path: Path, max_size: int = 400) -> None:
|
15 |
+
"""Serialize data to a file
|
16 |
+
|
17 |
+
Args:
|
18 |
+
data: The data to serialize
|
19 |
+
path: The path to save the serialized data
|
20 |
+
max_size: The maximum size a chunk can be (in elements)
|
21 |
+
"""
|
22 |
+
# first file is path, next chunks have ".1", ".2", etc. appended
|
23 |
+
for i, chunk in enumerate(tqdm([data[i : i + max_size] for i in range(0, len(data), max_size)])):
|
24 |
+
fd = path.with_suffix(f".{i}.pkl" if i else ".pkl")
|
25 |
+
with fd.open("wb") as f:
|
26 |
+
joblib.dump(chunk, f, compress=3)
|
27 |
+
|
28 |
+
|
29 |
+
def deserialize(path: Path) -> list[list[str]]:
|
30 |
+
"""Deserialize data from a file
|
31 |
+
|
32 |
+
Args:
|
33 |
+
path: The path to the serialized data
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
The deserialized data
|
37 |
+
"""
|
38 |
+
data = []
|
39 |
+
i = 0
|
40 |
+
while (fd := path.with_suffix(f".{i}.pkl" if i else ".pkl")).exists():
|
41 |
+
with fd.open("rb") as f:
|
42 |
+
data.extend(joblib.load(f))
|
43 |
+
i += 1
|
44 |
+
return data
|