Spaces:
Sleeping
Sleeping
Add evaluate command
Browse files- app/cli.py +50 -5
app/cli.py
CHANGED
@@ -76,6 +76,51 @@ def predict(model_path: Path, text: list[str]) -> None:
|
|
76 |
click.echo(sentiment)
|
77 |
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
@cli.command()
|
80 |
@click.option(
|
81 |
"--dataset",
|
@@ -120,13 +165,14 @@ def train(
|
|
120 |
import joblib
|
121 |
|
122 |
from app.constants import MODELS_DIR
|
123 |
-
from app.
|
|
|
124 |
|
125 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
126 |
if model_path.exists() and not force:
|
127 |
click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)
|
128 |
|
129 |
-
click.echo("
|
130 |
text_data, label_data = load_data(dataset)
|
131 |
click.echo(DONE_STR)
|
132 |
|
@@ -134,9 +180,8 @@ def train(
|
|
134 |
model = create_model(max_features, seed=None if seed == -1 else seed, verbose=True)
|
135 |
click.echo(DONE_STR)
|
136 |
|
137 |
-
# click.echo("Training model... ", nl=False)
|
138 |
click.echo("Training model... ")
|
139 |
-
accuracy
|
140 |
click.echo("Model accuracy: ", nl=False)
|
141 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
142 |
|
@@ -145,7 +190,7 @@ def train(
|
|
145 |
click.secho(str(model_path), fg="blue")
|
146 |
|
147 |
click.echo("Evaluating model... ", nl=False)
|
148 |
-
acc_mean, acc_std = evaluate_model(model,
|
149 |
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")
|
150 |
|
151 |
|
|
|
76 |
click.echo(sentiment)
|
77 |
|
78 |
|
79 |
+
@cli.command()
|
80 |
+
@click.option(
|
81 |
+
"--dataset",
|
82 |
+
required=True,
|
83 |
+
help="Dataset to train the model on",
|
84 |
+
type=click.Choice(["sentiment140", "amazonreviews", "imdb50k"]),
|
85 |
+
)
|
86 |
+
@click.option(
|
87 |
+
"--model",
|
88 |
+
"model_path",
|
89 |
+
required=True,
|
90 |
+
help="Path to the trained model",
|
91 |
+
type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
|
92 |
+
)
|
93 |
+
@click.option(
|
94 |
+
"--cv",
|
95 |
+
default=5,
|
96 |
+
help="Number of cross-validation folds",
|
97 |
+
show_default=True,
|
98 |
+
type=click.IntRange(1, 50),
|
99 |
+
)
|
100 |
+
def evaluate(
|
101 |
+
dataset: Literal["sentiment140", "amazonreviews", "imdb50k"],
|
102 |
+
model_path: Path,
|
103 |
+
cv: int,
|
104 |
+
) -> None:
|
105 |
+
"""Evaluate the model on the test dataset"""
|
106 |
+
import joblib
|
107 |
+
|
108 |
+
from app.data import load_data
|
109 |
+
from app.model import evaluate_model
|
110 |
+
|
111 |
+
click.echo("Loading dataset... ", nl=False)
|
112 |
+
text_data, label_data = load_data(dataset)
|
113 |
+
click.echo(DONE_STR)
|
114 |
+
|
115 |
+
click.echo("Loading model... ", nl=False)
|
116 |
+
model = joblib.load(model_path)
|
117 |
+
click.echo(DONE_STR)
|
118 |
+
|
119 |
+
click.echo("Evaluating model... ", nl=False)
|
120 |
+
acc_mean, acc_std = evaluate_model(model, text_data, label_data, folds=cv)
|
121 |
+
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")
|
122 |
+
|
123 |
+
|
124 |
@cli.command()
|
125 |
@click.option(
|
126 |
"--dataset",
|
|
|
165 |
import joblib
|
166 |
|
167 |
from app.constants import MODELS_DIR
|
168 |
+
from app.data import load_data
|
169 |
+
from app.model import create_model, evaluate_model, train_model
|
170 |
|
171 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
172 |
if model_path.exists() and not force:
|
173 |
click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)
|
174 |
|
175 |
+
click.echo("Loading dataset... ", nl=False)
|
176 |
text_data, label_data = load_data(dataset)
|
177 |
click.echo(DONE_STR)
|
178 |
|
|
|
180 |
model = create_model(max_features, seed=None if seed == -1 else seed, verbose=True)
|
181 |
click.echo(DONE_STR)
|
182 |
|
|
|
183 |
click.echo("Training model... ")
|
184 |
+
accuracy = train_model(model, text_data, label_data)
|
185 |
click.echo("Model accuracy: ", nl=False)
|
186 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
187 |
|
|
|
190 |
click.secho(str(model_path), fg="blue")
|
191 |
|
192 |
click.echo("Evaluating model... ", nl=False)
|
193 |
+
acc_mean, acc_std = evaluate_model(model, text_data, label_data, folds=cv)
|
194 |
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")
|
195 |
|
196 |
|