from __future__ import annotations import os from typing import TYPE_CHECKING import numpy as np from joblib import Memory from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import RandomizedSearchCV, cross_val_score, train_test_split from sklearn.pipeline import Pipeline from app.constants import CACHE_DIR from app.data import tokenize if TYPE_CHECKING: from sklearn.base import BaseEstimator __all__ = ["train_model", "evaluate_model", "infer_model"] def _identity(x: list[str]) -> list[str]: """Identity function for use in TfidfVectorizer. Args: x: Input data Returns: Unchanged input data """ return x def train_model( token_data: list[str], label_data: list[int], max_features: int, folds: int = 5, n_jobs: int = 4, seed: int = 42, verbose: bool = False, ) -> tuple[BaseEstimator, float]: """Train the sentiment analysis model. Args: model: Untrained model token_data: Tokenized text data label_data: Label data max_features: Maximum number of features folds: Number of cross-validation folds n_jobs: Number of parallel jobs seed: Random seed (None for random seed) verbose: Whether to output additional information Returns: Trained model and accuracy """ text_train, text_test, label_train, label_test = train_test_split( token_data, label_data, test_size=0.2, random_state=seed, ) param_distributions = { "classifier__C": np.logspace(-4, 4, 20), "classifier__solver": ["liblinear", "saga"], } model = Pipeline( [ ( "vectorizer", TfidfVectorizer( max_features=max_features, ngram_range=(1, 2), # disable text processing tokenizer=_identity, preprocessor=_identity, lowercase=False, token_pattern=None, ), ), ( "classifier", LogisticRegression( max_iter=1000, random_state=None if seed == -1 else seed, ), ), ], memory=Memory(CACHE_DIR, verbose=0), verbose=verbose, ) search = RandomizedSearchCV( model, param_distributions, cv=folds, random_state=seed, n_jobs=n_jobs, verbose=2 if verbose else 0, scoring="accuracy", n_iter=10, ) os.environ["PYTHONWARNINGS"] = "ignore" search.fit(text_train, label_train) del os.environ["PYTHONWARNINGS"] best_model = search.best_estimator_ return best_model, best_model.score(text_test, label_test) def evaluate_model( model: BaseEstimator, token_data: list[str], label_data: list[int], folds: int = 5, n_jobs: int = 4, verbose: bool = False, ) -> tuple[float, float]: """Evaluate the model using cross-validation. Args: model: Trained model token_data: Tokenized text data label_data: Label data folds: Number of cross-validation folds n_jobs: Number of parallel jobs verbose: Whether to output additional information Returns: Mean accuracy and standard deviation """ os.environ["PYTHONWARNINGS"] = "ignore" scores = cross_val_score( model, token_data, label_data, cv=folds, scoring="accuracy", n_jobs=n_jobs, verbose=2 if verbose else 0, ) del os.environ["PYTHONWARNINGS"] return scores.mean(), scores.std() def infer_model( model: BaseEstimator, text_data: list[str], batch_size: int = 32, n_jobs: int = 4, ) -> list[int]: """Predict the sentiment of the provided text documents. Args: model: Trained model text_data: Text data batch_size: Batch size for tokenization n_jobs: Number of parallel jobs Returns: Predicted sentiments """ tokens = tokenize( text_data, batch_size=batch_size, n_jobs=n_jobs, show_progress=False, ) return model.predict(tokens)