--- title: Sentiment Analysis emoji: 🤗 colorFrom: blue colorTo: green pinned: false sdk: gradio python_version: 3.11 app_file: app/gui.py datasets: - mrshu/amazonreviews - stanfordnlp/sentiment140 - stanfordnlp/imdb - Sp1786/multiclass-sentiment-analysis-dataset models: - spacy/en_core_web_sm --- # Sentiment Analysis [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Tymec/sentiment-analysis) ### Table of Contents - [Description](#description) - [Installation](#installation) - [Prerequisites](#prerequisites) - [Usage](#usage) - [Predict](#predict) - [GUI](#gui) - [Training](#training) - [Evaluation](#evaluation) - [Options](#options) - [Datasets](#datasets) - [Vectorizers](#vectorizers) - [Environment Variables](#environment-variables) - [Implementation](#implementation) - [Architecture](#architecture) - [Pre-trained Models](#pre-trained-models) - [License](#license) ## Description This is a simple sentiment analysis model written in Python, designed to predict whether the provided text has a positive or negative sentiment. The project comes with both a graphical user interface and a command-line interface. While training the model, the user can choose from a couple of datasets to train the model on and then evaluate the trained model on another dataset. Once the model is trained, it can be used to predict the sentiment of any text with the help of the GUI or CLI. ## Installation Clone the repository and once inside the directory, run the following command to install the dependencies: ```bash python -m pip install -r requirements.txt ``` Ensure that you have **at least** one dataset downloaded and placed in the data directory before running `train`. For `evaluate`, you will need the `test` dataset. See [Datasets](#datasets) for more information. The project comes with pre-trained models that can be used for prediction. See [Pre-trained Models](#pre-trained-models) for more information. ### Prerequisites - Python 3.11+ ## Usage To see the available commands and options, run: ```bash python -m app --help ``` ### Predict To perform sentiment analysis on a given text, run the following command: ```bash python -m app predict --model I love this movie ``` where `` is the path to the trained model. Alternatively, you can pipe the text into the command: ```bash echo "I love this movie" | python -m app predict --model ``` ### GUI To launch the GUI, run the following command: ```bash python -m app gui --model ``` where `` is the path to the trained model. Add the `--share` flag to create a publicly accessible link. After running the command, open the link from the terminal in your browser to access the GUI. ### Training Before training the model, ensure that the specified dataset is downloaded and can be accessed at its respective path. To train the model, run the following command: ```bash python -m app train --dataset {options} ``` where `` is the name of the dataset to train the model on. For available datasets, see [Datasets](#datasets). The trained model will be exported to the models directory. To see all available options, run: ```bash python -m app train --help ``` ### Evaluation Once the model is trained, you can evaluate it on a different dataset by running the following command: ```bash python -m app evaluate --model ``` where `` is the path to the trained model. For available datasets, see [Datasets](#datasets). To see all available options, run: ```bash python -m app evaluate --help ``` ## Options ### Datasets | Option | Path | Notes | Dataset | | --- | --- | --- | --- | | sentiment140 | `data/sentiment140.csv` | | [Twitter Sentiment Analysis](https://www.kaggle.com/kazanova/sentiment140) | | amazonreviews | `data/amazonreviews.bz2` | only train is used | [Amazon Product Reviews](https://www.kaggle.com/bittlingmayer/amazonreviews) | | imdb50k | `data/imdb50k.csv` | | [IMDB Movie Reviews](https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews) | | test | `data/test.csv` | required for `evaluate` | [Multiclass Sentiment Analysis](https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset) | #### Used for text preprocessing - [Slang Map](Https://www.kaggle.com/code/nmaguette/up-to-date-list-of-slangs-for-text-preprocessing) ### Vectorizers | Option | Description | When to Use | | --- | --- | --- | | `count` | Count Vectorizer | When the frequency of words is important | | `tfidf` | TF-IDF Vectorizer | When the importance of words is important | | `hashing` | Hashing Vectorizer | When memory is a concern | ### Environment Variables The following environment variables can be set to customize the behavior of the application: | Name | Description | Default | | --- | --- | --- | | `MODEL_DIR` | the directory where the trained models are stored | `models` | | `DATA_DIR` | the directory where the datasets are stored | `data` | | `CACHE_DIR` | the directory where cached files are stored | `.cache` | ## Implementation ### Architecture The input text is first preprocessed and tokenized using `re` and `spaCy` where: - The text is cleaned up by removing any HTML tags and converting emojis to text - Stop words and punctuation are removed - URLs, email addresses and numbers are removed - Words are converted to lowercase - Lemmatization is performed (words are converted to their base form based on the surrounding context) After tokenization, feature extraction is performed on the tokens using the chosen vectorizer. Each vectorizer has its own advantages and disadvantages, and the choice of vectorizer can affect the speed and accuracy of the model (see [Vectorizers](#vectorizers)). The extracted features are then passed to the classifier which predicts the class which in this case is the sentiment of the text. Both the vectorizer and classifier are trained on the specified dataset. ```mermaid %%{ init : { "flowchart" : { "curve" : "monotoneX" }}}%% graph LR START:::hidden --> |text|Preprocessing subgraph Preprocessing direction TB A[Tokenizer] B1[HashingVectorizer] B2[CountVectorizer] B3[TfidfVectorizer] A --> B1 A --> |tokens|B2 A --> B3 B1 --> C1:::hidden B2 --> C2:::hidden B3 --> C3:::hidden end Preprocessing --> |features|Classification subgraph Classification direction LR D1[LogisticRegression] D2[LinearSVC] end Classification --> |sentiment|END:::hidden classDef hidden display: none; ``` ### Pre-trained Models The following pre-trained models are available for use: | Dataset | Vectorizer | Features | Classifier | Accuracy | Model | | --- | --- | --- | --- | --- | --- | | `sentiment140` | `tfidf` | `LinearRegression` | 20 000 | ? | [Here](models/sentiment140_tfidf_ft-20000.pkl) | | `imdb50k` | `tfidf` | `LinearRegression` | 20 000 | ? | [Here](models/imdb50k_tfidf_ft-20000.pkl) | | `imdb50k` | `tfidf` | `LinearRegression` | 800 | ? | [Here](models/imdb50k_tfidf_ft-800.pkl) | | `imdb50k` | `hashing` | `LinearRegression` | 1 048 576 | 55.65% ± 1.07% | [Here](models/imdb50k_hashing_ft1048576.pkl) | The accuracy of the models is based on the cross-validation score using the `test` dataset and `5` folds. #### Note Due to the size of the `amazonreviews` dataset, it was not possible to train a model with a vectorizer other than `hashing`. ## License Distributed under the MIT License. See [LICENSE](LICENSE) for more information.