from __future__ import annotations from pathlib import Path from typing import Literal import click __all__ = ["cli_wrapper"] DONE_STR = click.style("DONE", fg="green") @click.group() def cli() -> None: ... @cli.command() @click.option( "--model", "model_path", required=True, help="Path to the trained model", type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path), ) @click.option( "--share/--no-share", default=False, help="Whether to create a shareable link", ) def gui(model_path: Path, share: bool) -> None: """Launch the Gradio GUI""" import os from app.gui import launch_gui os.environ["MODEL_PATH"] = model_path.as_posix() launch_gui(share) @cli.command() @click.option( "--model", "model_path", required=True, help="Path to the trained model", type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path), ) @click.argument("text", nargs=-1) def predict(model_path: Path, text: list[str]) -> None: """Perform sentiment analysis on the provided text. Note: Piped input takes precedence over the text argument """ import sys import joblib from app.model import infer_model text = " ".join(text).strip() if not sys.stdin.isatty(): piped_text = sys.stdin.read().strip() text = piped_text or text if not text: msg = "No text provided" raise click.UsageError(msg) click.echo("Loading model... ", nl=False) model = joblib.load(model_path) click.echo(DONE_STR) click.echo("Performing sentiment analysis... ", nl=False) prediction = infer_model(model, [text])[0] # prediction = model.predict([text])[0] if prediction == 0: sentiment = click.style("NEGATIVE", fg="red") elif prediction == 1: sentiment = click.style("POSITIVE", fg="green") else: sentiment = click.style("NEUTRAL", fg="yellow") click.echo(sentiment) @cli.command() @click.option( "--dataset", default="test", help="Dataset to evaluate the model on", type=click.Choice(["test", "sentiment140", "amazonreviews", "imdb50k"]), ) @click.option( "--model", "model_path", required=True, help="Path to the trained model", type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path), ) @click.option( "--cv", default=5, help="Number of cross-validation folds", show_default=True, type=click.IntRange(1, 50), ) @click.option( "--token-batch-size", default=512, help="Size of the batches used in tokenization", show_default=True, ) @click.option( "--token-jobs", default=4, help="Number of parallel jobs to run for tokenization", show_default=True, ) @click.option( "--eval-jobs", default=1, help="Number of parallel jobs to run for evaluation", show_default=True, ) @click.option( "--force-cache", is_flag=True, help="Always use the cached tokenized data (if available)", ) def evaluate( dataset: Literal["test", "sentiment140", "amazonreviews", "imdb50k"], model_path: Path, cv: int, token_batch_size: int, token_jobs: int, eval_jobs: int, force_cache: bool, ) -> None: """Evaluate the model on the the specified dataset""" import gc import joblib import pandas as pd from app.constants import TOKENIZER_CACHE_PATH from app.data import load_data, tokenize from app.model import evaluate_model from app.utils import deserialize, serialize token_cache_path = TOKENIZER_CACHE_PATH / f"{dataset}_tokenized.pkl" label_cache_path = TOKENIZER_CACHE_PATH / f"{dataset}_labels.pkl" use_cached_data = False if token_cache_path.exists(): use_cached_data = force_cache or click.confirm( f"Found existing tokenized data for '{dataset}'. Use it?", default=True, ) if use_cached_data: click.echo("Loading cached data... ", nl=False) token_data = pd.Series(deserialize(token_cache_path)) label_data = joblib.load(label_cache_path) click.echo(DONE_STR) else: click.echo("Loading dataset... ", nl=False) text_data, label_data = load_data(dataset) click.echo(DONE_STR) click.echo("Tokenizing data... ") token_data = tokenize(text_data, batch_size=token_batch_size, n_jobs=token_jobs, show_progress=True) click.echo("Caching tokenized data... ") serialize(token_data, token_cache_path, show_progress=True) joblib.dump(label_data, label_cache_path, compress=3) del text_data gc.collect() click.echo("Size of vocabulary: ", nl=False) vocab = token_data.explode().value_counts() click.secho(str(len(vocab)), fg="blue") click.echo("Loading model... ", nl=False) model = joblib.load(model_path) click.echo(DONE_STR) click.echo("Evaluating model... ", nl=False) acc_mean, acc_std = evaluate_model( model, token_data, label_data, folds=cv, n_jobs=eval_jobs, ) click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue") @cli.command() @click.option( "--dataset", required=True, help="Dataset to train the model on", type=click.Choice(["sentiment140", "amazonreviews", "imdb50k"]), ) @click.option( "--vectorizer", default="tfidf", help="Vectorizer to use", type=click.Choice(["tfidf", "count", "hashing"]), ) @click.option( "--max-features", default=20000, help="Maximum number of features (should be greater than 2^15 when using hashing vectorizer)", show_default=True, type=click.IntRange(1, None), ) @click.option( "--min-df", default=0.1, help="Minimum document frequency for the vectorizer (ignored for hashing)", show_default=True, type=click.FloatRange(0, 1), ) @click.option( "--cv", default=5, help="Number of cross-validation folds", show_default=True, type=click.IntRange(1, 50), ) @click.option( "--token-batch-size", default=512, help="Size of the batches used in tokenization", show_default=True, ) @click.option( "--token-jobs", default=4, help="Number of parallel jobs to run for tokenization", show_default=True, ) @click.option( "--train-jobs", default=1, help="Number of parallel jobs to run for training", show_default=True, ) @click.option( "--seed", default=42, help="Random seed (-1 for random seed)", show_default=True, type=click.IntRange(-1, None), ) @click.option( "--overwrite", is_flag=True, help="Overwrite the model file if it already exists", ) @click.option( "--force-cache", is_flag=True, help="Always use the cached tokenized data (if available)", ) def train( dataset: Literal["sentiment140", "amazonreviews", "imdb50k"], vectorizer: Literal["tfidf", "count", "hashing"], max_features: int, min_df: float, cv: int, token_batch_size: int, token_jobs: int, train_jobs: int, seed: int, overwrite: bool, force_cache: bool, ) -> None: """Train the model on the provided dataset""" import gc import joblib import pandas as pd from app.constants import MODEL_DIR, TOKENIZER_CACHE_PATH from app.data import load_data, tokenize from app.model import train_model from app.utils import deserialize, serialize model_path = MODEL_DIR / f"{dataset}_{vectorizer}_ft{max_features}.pkl" if model_path.exists() and not overwrite: click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True) token_cache_path = TOKENIZER_CACHE_PATH / f"{dataset}_tokenized.pkl" label_cache_path = TOKENIZER_CACHE_PATH / f"{dataset}_labels.pkl" use_cached_data = False if token_cache_path.exists(): use_cached_data = force_cache or click.confirm( f"Found existing tokenized data for '{dataset}'. Use it?", default=True, ) if use_cached_data: click.echo("Loading cached data... ", nl=False) token_data = pd.Series(deserialize(token_cache_path)) label_data = joblib.load(label_cache_path) click.echo(DONE_STR) else: click.echo("Loading dataset... ", nl=False) text_data, label_data = load_data(dataset) click.echo(DONE_STR) click.echo("Tokenizing data... ") token_data = tokenize(text_data, batch_size=token_batch_size, n_jobs=token_jobs, show_progress=True) click.echo("Caching tokenized data... ") serialize(token_data, token_cache_path, show_progress=True) joblib.dump(label_data, label_cache_path, compress=3) del text_data gc.collect() click.echo("Size of vocabulary: ", nl=False) vocab = token_data.explode().value_counts() click.secho(str(len(vocab)), fg="blue") click.echo("Training model... ") model, accuracy = train_model( token_data, label_data, vectorizer=vectorizer, max_features=max_features, min_df=min_df, folds=cv, n_jobs=train_jobs, seed=seed, ) click.echo("Model accuracy: ", nl=False) click.secho(f"{accuracy:.2%}", fg="blue") click.echo("Model saved to: ", nl=False) joblib.dump(model, model_path, compress=3) click.secho(str(model_path), fg="blue") def cli_wrapper() -> None: cli(max_content_width=120) if __name__ == "__main__": cli_wrapper()