Niansuh commited on
Commit
ed8fbbc
1 Parent(s): 349ceab

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -106
app.py DELETED
@@ -1,106 +0,0 @@
1
- import spaces
2
- import gradio as gr
3
- from transformers import AutoModelForCausalLM, AutoTokenizer
4
- import torch
5
-
6
- class ModelProcessor:
7
- def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"):
8
- self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
- self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
10
- self.model = AutoModelForCausalLM.from_pretrained(
11
- repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True
12
- )
13
- self.model.eval()
14
- self.tokenizer.pad_token = self.tokenizer.eos_token
15
-
16
- @torch.inference_mode()
17
- def process_data_and_compute_statistics(self, prompt):
18
- tokens = self.tokenizer(
19
- prompt, return_tensors="pt", truncation=True, max_length=512
20
- ).to(self.model.device)
21
- outputs = self.model(tokens["input_ids"])
22
- logits = outputs.logits
23
- shifted_labels = tokens["input_ids"][..., 1:].contiguous()
24
- shifted_logits = logits[..., :-1, :].contiguous()
25
- shifted_probs = torch.softmax(shifted_logits, dim=-1)
26
- shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1)
27
- entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze()
28
- logits_flat = shifted_logits.view(-1, shifted_logits.size(-1))
29
- labels_flat = shifted_labels.view(-1)
30
- probabilities_flat = torch.softmax(logits_flat, dim=-1)
31
- true_class_probabilities = probabilities_flat.gather(
32
- 1, labels_flat.unsqueeze(1)
33
- ).squeeze(1)
34
- nll = -torch.log(
35
- true_class_probabilities.clamp(min=1e-9)
36
- )
37
- ranks = (
38
- shifted_logits.argsort(dim=-1, descending=True)
39
- == shifted_labels.unsqueeze(-1)
40
- ).nonzero()[:, -1]
41
- if entropy.clamp(max=4).median() < 2.0:
42
- return 1
43
- return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0
44
-
45
- processor = ModelProcessor()
46
-
47
- @spaces.GPU(duration=180)
48
- def detect(prompt):
49
- prediction = processor.process_data_and_compute_statistics(prompt)
50
- if prediction == 1:
51
- return "<div class='output-text'>The text is likely <b>generated</b> by a language model.</div>"
52
- else:
53
- return "<div class='output-text'>The text is likely <b>not generated</b> by a language model.</div>"
54
-
55
- with gr.Blocks(
56
- css="""
57
- .gradio-container {
58
- max-width: 800px;
59
- margin: 0 auto;
60
- }
61
- .gr-box {
62
- box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
63
- padding: 20px;
64
- border-radius: 4px;
65
- }
66
- .gr-button {
67
- background-color: #007bff;
68
- color: white;
69
- padding: 10px 20px;
70
- border-radius: 4px;
71
- }
72
- .gr-button:hover {
73
- background-color: #0056b3;
74
- }
75
- .hyperlinks a {
76
- margin-right: 10px;
77
- }
78
- .output-text {
79
- text-align: center;
80
- font-size: 24px;
81
- font-weight: bold;
82
- }
83
- """
84
- ) as demo:
85
- with gr.Row():
86
- with gr.Column(scale=3):
87
- gr.Markdown("# ENTELL Model Detection - ChatGPTBots.net")
88
- with gr.Column(scale=1):
89
- gr.HTML(
90
- """
91
- """,
92
- elem_classes="hyperlinks",
93
- )
94
- with gr.Row():
95
- with gr.Column():
96
- prompt = gr.Textbox(
97
- lines=8,
98
- placeholder="Type your prompt here...",
99
- label="Prompt",
100
- )
101
- submit_btn = gr.Button("Submit", variant="primary")
102
- output = gr.HTML() # Changed to gr.HTML() to support custom HTML
103
-
104
- submit_btn.click(fn=detect, inputs=prompt, outputs=output)
105
-
106
- demo.launch()