import math
import torch
from torch import nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn import functional as F
from torch.nn.modules.utils import _pair, _single

try:
    from . import deform_conv_ext
except ImportError:
    import os
    BASICSR_JIT = os.getenv('BASICSR_JIT')
    if BASICSR_JIT == 'True':
        from torch.utils.cpp_extension import load
        module_path = os.path.dirname(__file__)
        deform_conv_ext = load(
            'deform_conv',
            sources=[
                os.path.join(module_path, 'src', 'deform_conv_ext.cpp'),
                os.path.join(module_path, 'src', 'deform_conv_cuda.cpp'),
                os.path.join(module_path, 'src', 'deform_conv_cuda_kernel.cu'),
            ],
        )


class DeformConvFunction(Function):

    @staticmethod
    def forward(ctx,
                input,
                offset,
                weight,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                deformable_groups=1,
                im2col_step=64):
        if input is not None and input.dim() != 4:
            raise ValueError(f'Expected 4D tensor as input, got {input.dim()}' 'D tensor instead.')
        ctx.stride = _pair(stride)
        ctx.padding = _pair(padding)
        ctx.dilation = _pair(dilation)
        ctx.groups = groups
        ctx.deformable_groups = deformable_groups
        ctx.im2col_step = im2col_step

        ctx.save_for_backward(input, offset, weight)

        output = input.new_empty(DeformConvFunction._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride))

        ctx.bufs_ = [input.new_empty(0), input.new_empty(0)]  # columns, ones

        if not input.is_cuda:
            raise NotImplementedError
        else:
            cur_im2col_step = min(ctx.im2col_step, input.shape[0])
            assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize'
            deform_conv_ext.deform_conv_forward(input, weight,
                                                offset, output, ctx.bufs_[0], ctx.bufs_[1], weight.size(3),
                                                weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1],
                                                ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups,
                                                ctx.deformable_groups, cur_im2col_step)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        input, offset, weight = ctx.saved_tensors

        grad_input = grad_offset = grad_weight = None

        if not grad_output.is_cuda:
            raise NotImplementedError
        else:
            cur_im2col_step = min(ctx.im2col_step, input.shape[0])
            assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize'

            if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
                grad_input = torch.zeros_like(input)
                grad_offset = torch.zeros_like(offset)
                deform_conv_ext.deform_conv_backward_input(input, offset, grad_output, grad_input,
                                                           grad_offset, weight, ctx.bufs_[0], weight.size(3),
                                                           weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1],
                                                           ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups,
                                                           ctx.deformable_groups, cur_im2col_step)

            if ctx.needs_input_grad[2]:
                grad_weight = torch.zeros_like(weight)
                deform_conv_ext.deform_conv_backward_parameters(input, offset, grad_output, grad_weight,
                                                                ctx.bufs_[0], ctx.bufs_[1], weight.size(3),
                                                                weight.size(2), ctx.stride[1], ctx.stride[0],
                                                                ctx.padding[1], ctx.padding[0], ctx.dilation[1],
                                                                ctx.dilation[0], ctx.groups, ctx.deformable_groups, 1,
                                                                cur_im2col_step)

        return (grad_input, grad_offset, grad_weight, None, None, None, None, None)

    @staticmethod
    def _output_size(input, weight, padding, dilation, stride):
        channels = weight.size(0)
        output_size = (input.size(0), channels)
        for d in range(input.dim() - 2):
            in_size = input.size(d + 2)
            pad = padding[d]
            kernel = dilation[d] * (weight.size(d + 2) - 1) + 1
            stride_ = stride[d]
            output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
        if not all(map(lambda s: s > 0, output_size)):
            raise ValueError('convolution input is too small (output would be ' f'{"x".join(map(str, output_size))})')
        return output_size


class ModulatedDeformConvFunction(Function):

    @staticmethod
    def forward(ctx,
                input,
                offset,
                mask,
                weight,
                bias=None,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                deformable_groups=1):
        ctx.stride = stride
        ctx.padding = padding
        ctx.dilation = dilation
        ctx.groups = groups
        ctx.deformable_groups = deformable_groups
        ctx.with_bias = bias is not None
        if not ctx.with_bias:
            bias = input.new_empty(1)  # fake tensor
        if not input.is_cuda:
            raise NotImplementedError
        if weight.requires_grad or mask.requires_grad or offset.requires_grad \
                or input.requires_grad:
            ctx.save_for_backward(input, offset, mask, weight, bias)
        output = input.new_empty(ModulatedDeformConvFunction._infer_shape(ctx, input, weight))
        ctx._bufs = [input.new_empty(0), input.new_empty(0)]
        deform_conv_ext.modulated_deform_conv_forward(input, weight, bias, ctx._bufs[0], offset, mask, output,
                                                      ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride,
                                                      ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
                                                      ctx.groups, ctx.deformable_groups, ctx.with_bias)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        if not grad_output.is_cuda:
            raise NotImplementedError
        input, offset, mask, weight, bias = ctx.saved_tensors
        grad_input = torch.zeros_like(input)
        grad_offset = torch.zeros_like(offset)
        grad_mask = torch.zeros_like(mask)
        grad_weight = torch.zeros_like(weight)
        grad_bias = torch.zeros_like(bias)
        deform_conv_ext.modulated_deform_conv_backward(input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1],
                                                       grad_input, grad_weight, grad_bias, grad_offset, grad_mask,
                                                       grad_output, weight.shape[2], weight.shape[3], ctx.stride,
                                                       ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
                                                       ctx.groups, ctx.deformable_groups, ctx.with_bias)
        if not ctx.with_bias:
            grad_bias = None

        return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias, None, None, None, None, None)

    @staticmethod
    def _infer_shape(ctx, input, weight):
        n = input.size(0)
        channels_out = weight.size(0)
        height, width = input.shape[2:4]
        kernel_h, kernel_w = weight.shape[2:4]
        height_out = (height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1
        width_out = (width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1
        return n, channels_out, height_out, width_out


deform_conv = DeformConvFunction.apply
modulated_deform_conv = ModulatedDeformConvFunction.apply


class DeformConv(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 deformable_groups=1,
                 bias=False):
        super(DeformConv, self).__init__()

        assert not bias
        assert in_channels % groups == 0, \
            f'in_channels {in_channels} is not divisible by groups {groups}'
        assert out_channels % groups == 0, \
            f'out_channels {out_channels} is not divisible ' \
            f'by groups {groups}'

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
        self.groups = groups
        self.deformable_groups = deformable_groups
        # enable compatibility with nn.Conv2d
        self.transposed = False
        self.output_padding = _single(0)

        self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size))

        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)

    def forward(self, x, offset):
        # To fix an assert error in deform_conv_cuda.cpp:128
        # input image is smaller than kernel
        input_pad = (x.size(2) < self.kernel_size[0] or x.size(3) < self.kernel_size[1])
        if input_pad:
            pad_h = max(self.kernel_size[0] - x.size(2), 0)
            pad_w = max(self.kernel_size[1] - x.size(3), 0)
            x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
            offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
        out = deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups,
                          self.deformable_groups)
        if input_pad:
            out = out[:, :, :out.size(2) - pad_h, :out.size(3) - pad_w].contiguous()
        return out


class DeformConvPack(DeformConv):
    """A Deformable Conv Encapsulation that acts as normal Conv layers.

    Args:
        in_channels (int): Same as nn.Conv2d.
        out_channels (int): Same as nn.Conv2d.
        kernel_size (int or tuple[int]): Same as nn.Conv2d.
        stride (int or tuple[int]): Same as nn.Conv2d.
        padding (int or tuple[int]): Same as nn.Conv2d.
        dilation (int or tuple[int]): Same as nn.Conv2d.
        groups (int): Same as nn.Conv2d.
        bias (bool or str): If specified as `auto`, it will be decided by the
            norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
            False.
    """

    _version = 2

    def __init__(self, *args, **kwargs):
        super(DeformConvPack, self).__init__(*args, **kwargs)

        self.conv_offset = nn.Conv2d(
            self.in_channels,
            self.deformable_groups * 2 * self.kernel_size[0] * self.kernel_size[1],
            kernel_size=self.kernel_size,
            stride=_pair(self.stride),
            padding=_pair(self.padding),
            dilation=_pair(self.dilation),
            bias=True)
        self.init_offset()

    def init_offset(self):
        self.conv_offset.weight.data.zero_()
        self.conv_offset.bias.data.zero_()

    def forward(self, x):
        offset = self.conv_offset(x)
        return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups,
                           self.deformable_groups)


class ModulatedDeformConv(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 deformable_groups=1,
                 bias=True):
        super(ModulatedDeformConv, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.deformable_groups = deformable_groups
        self.with_bias = bias
        # enable compatibility with nn.Conv2d
        self.transposed = False
        self.output_padding = _single(0)

        self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_channels))
        else:
            self.register_parameter('bias', None)
        self.init_weights()

    def init_weights(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.zero_()

    def forward(self, x, offset, mask):
        return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
                                     self.groups, self.deformable_groups)


class ModulatedDeformConvPack(ModulatedDeformConv):
    """A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers.

    Args:
        in_channels (int): Same as nn.Conv2d.
        out_channels (int): Same as nn.Conv2d.
        kernel_size (int or tuple[int]): Same as nn.Conv2d.
        stride (int or tuple[int]): Same as nn.Conv2d.
        padding (int or tuple[int]): Same as nn.Conv2d.
        dilation (int or tuple[int]): Same as nn.Conv2d.
        groups (int): Same as nn.Conv2d.
        bias (bool or str): If specified as `auto`, it will be decided by the
            norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
            False.
    """

    _version = 2

    def __init__(self, *args, **kwargs):
        super(ModulatedDeformConvPack, self).__init__(*args, **kwargs)

        self.conv_offset = nn.Conv2d(
            self.in_channels,
            self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
            kernel_size=self.kernel_size,
            stride=_pair(self.stride),
            padding=_pair(self.padding),
            dilation=_pair(self.dilation),
            bias=True)
        self.init_weights()

    def init_weights(self):
        super(ModulatedDeformConvPack, self).init_weights()
        if hasattr(self, 'conv_offset'):
            self.conv_offset.weight.data.zero_()
            self.conv_offset.bias.data.zero_()

    def forward(self, x):
        out = self.conv_offset(x)
        o1, o2, mask = torch.chunk(out, 3, dim=1)
        offset = torch.cat((o1, o2), dim=1)
        mask = torch.sigmoid(mask)
        return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
                                     self.groups, self.deformable_groups)