nllb / app.py
davanstrien's picture
davanstrien HF staff
add meta copy changes (#2)
be7ccc0 verified
raw
history blame
2.93 kB
import spaces
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from flores import code_mapping
import platform
import torch
import nltk
nltk.download("punkt")
device = "cpu" if platform.system() == "Darwin" else "cuda"
MODEL_NAME = "facebook/nllb-200-3.3B"
code_mapping = dict(sorted(code_mapping.items(), key=lambda item: item[1]))
flores_codes = list(code_mapping.keys())
def load_model():
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME).to(device)
return model
model = load_model()
def load_tokenizer(src_lang, tgt_lang):
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME, src_lang=code_mapping[src_lang], tgt_lang=code_mapping[tgt_lang]
)
return tokenizer
@spaces.GPU
def translate(text: str, src_lang: str, tgt_lang: str):
tokenizer = load_tokenizer(src_lang, tgt_lang)
paragraphs = text.split("\n")
translated_paragraphs = []
for paragraph in paragraphs:
sentences = nltk.sent_tokenize(paragraph)
translated_sentences = []
for sentence in sentences:
input_tokens = (
tokenizer(sentence, return_tensors="pt")
.input_ids[0]
.cpu()
.numpy()
.tolist()
)
translated_chunk = model.generate(
input_ids=torch.tensor([input_tokens]).to(device),
forced_bos_token_id=tokenizer.lang_code_to_id[code_mapping[tgt_lang]],
max_length=len(input_tokens) + 50,
num_return_sequences=1,
)
translated_chunk = tokenizer.decode(
translated_chunk[0], skip_special_tokens=True
)
translated_sentences.append(translated_chunk)
translated_paragraph = " ".join(translated_sentences)
translated_paragraphs.append(translated_paragraph)
return "\n".join(translated_paragraphs)
description = """
UNESCO, Meta, and Hugging Face have come together to create an accessible, high-quality translation experience in 200 languages.
This is made possible through an open approach to AI innovation using Meta’s open-sourced No Language Left Behind (NLLB) AI model, hosted on Hugging Face Spaces.
"""
with gr.Blocks() as demo:
gr.Markdown("# UNESCO Language Translator, powered by Meta and Hugging Face")
gr.Markdown(description)
with gr.Row():
src_lang = gr.Dropdown(label="Source Language", choices=flores_codes)
target_lang = gr.Dropdown(label="Target Language", choices=flores_codes)
with gr.Row():
input_text = gr.Textbox(label="Input Text", lines=6)
with gr.Row():
btn = gr.Button("Translate text")
with gr.Row():
output = gr.Textbox(label="Output Text", lines=6)
btn.click(
translate,
inputs=[input_text, src_lang, target_lang],
outputs=output,
)
demo.launch()