File size: 3,252 Bytes
c8a0f34
 
df1d046
 
7b6cdd4
c755297
 
 
 
61dbd5e
c755297
 
 
 
 
 
e378588
34ce748
c755297
 
 
d4c77e7
 
0a9e139
 
c755297
 
 
 
 
 
 
4871886
c755297
 
 
 
 
 
c020cdf
 
 
c8a0f34
54c11e5
 
307f1d8
 
df1d046
307f1d8
 
 
 
 
 
 
c020cdf
 
 
 
 
 
 
009017d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77fb110
009017d
7704f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3884ef0
009017d
 
 
 
 
 
 
 
 
 
 
 
77fb110
009017d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import streamlit as st
from PIL import Image
from datetime import time as t
import time

from operator import itemgetter  
import os
import json
import getpass
import openai
  
from langchain.vectorstores import Pinecone
from langchain.embeddings import OpenAIEmbeddings  
import pinecone


from results import results_agent
from filter import filter_agent
from reranker import reranker
from utils import build_filter

OPENAI_API = st.secrets["OPENAI_API"]
PINECONE_API = st.secrets["PINECONE_API"]
openai.api_key = OPENAI_API


pinecone.init(
    api_key= PINECONE_API,
    environment="gcp-starter" 
)
index_name = "use-class-db"

embeddings = OpenAIEmbeddings(openai_api_key = OPENAI_API)

index = pinecone.Index(index_name)

k = 5


if "messages" not in st.session_state:
    st.session_state.messages = []


st.title("USC GPT - Find the perfect class")

class_time = st.slider(
    "Filter Class Times:",
    value=(t(11, 30), t(12, 45)))

# st.write("You're scheduled for:", class_time)

units = st.slider(
    "Number of units",
    1, 4,
    value = (1, 4)
)


for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


### GPT Response
# Display assistant response in chat message container
with st.chat_message("assistant"):
    message_placeholder = st.empty()
    full_response = ""
    assistant_response = "How can I help you today?"
    # Simulate stream of response with milliseconds delay
    for chunk in assistant_response.split():
        full_response += chunk + " "
        time.sleep(0.05)
        # Add a blinking cursor to simulate typing
        message_placeholder.markdown(full_response + "β–Œ")
    message_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})

if prompt := st.chat_input("What kind of class are you looking for?"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})

    response = filter_agent(prompt, OPENAI_API)
    query = response

    response = index.query(
        vector= embeddings.embed_query(query),
        # filter= build_filter(json),
        top_k=5,
        include_metadata=True
    )
    response = reranker(query, response)
    result_query = 'Original Query:' + query + 'Query Results:' + str(response)
    assistant_response = result_agent(result_query, OPENAI_API)

    if assistant_response:
        with st.chat_message("assistant"):
            message_placeholder = st.empty()
            full_response = ""
            # Simulate stream of response with milliseconds delay
            for chunk in assistant_response.split():
                full_response += chunk + " "
                time.sleep(0.05)
                # Add a blinking cursor to simulate typing
                message_placeholder.markdown(full_response + "β–Œ")
            message_placeholder.markdown(full_response)
        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": full_response})