sdsdsd / app.py
Uhhy's picture
Create app.py
54e7c0c verified
raw
history blame
8.3 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import uvicorn
from dotenv import load_dotenv
import io
import requests
import asyncio
import time
# Cargar variables de entorno
load_dotenv()
# Inicializar aplicaci贸n FastAPI
app = FastAPI()
# Configuraci贸n de los modelos
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"},
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-72B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-72b-instruct-q2_k.gguf", "name": "Qwen2 Math 72B Instruct"},
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
]
# Clase para gestionar modelos
class ModelManager:
def __init__(self):
self.models = []
self.configs = {}
async def download_model_to_memory(self, model_config):
print(f"Descargando modelo: {model_config['name']}...")
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
response = requests.get(url)
if response.status_code == 200:
model_file = io.BytesIO(response.content)
return model_file
else:
raise Exception(f"Error al descargar el modelo: {response.status_code}")
async def load_model(self, model_config):
try:
start_time = time.time()
model_file = await self.download_model_to_memory(model_config)
print(f"Cargando modelo: {model_config['name']}...")
# Cargar el modelo usando llama_cpp
llama = await asyncio.get_event_loop().run_in_executor(
None,
lambda: Llama.from_pretrained(model_file)
)
# Simulaci贸n de divisi贸n de carga si el tiempo excede 1 segundo
async def load_part(part):
# Esta funci贸n simula la carga de una parte del modelo
await asyncio.sleep(0.1) # Simula un peque帽o retraso en la carga
if time.time() - start_time > 1:
print(f"Modelo {model_config['name']} tard贸 m谩s de 1 segundo en cargarse, dividiendo la carga...")
await asyncio.gather(*(load_part(part) for part in range(5))) # Simulaci贸n de divisi贸n en 5 partes
tokenizer = llama.tokenizer
# Almacenar tokens y tokenizer en la RAM
model_data = {
'model': llama,
'tokenizer': tokenizer,
'pad_token': tokenizer.pad_token,
'pad_token_id': tokenizer.pad_token_id,
'eos_token': tokenizer.eos_token,
'eos_token_id': tokenizer.eos_token_id,
'bos_token': tokenizer.bos_token,
'bos_token_id': tokenizer.bos_token_id,
'unk_token': tokenizer.unk_token,
'unk_token_id': tokenizer.unk_token_id
}
self.models.append({"model_data": model_data, "name": model_config['name']})
except Exception as e:
print(f"Error al cargar el modelo: {e}")
async def load_all_models(self):
print("Iniciando carga de modelos...")
start_time = time.time()
tasks = [self.load_model(config) for config in model_configs]
await asyncio.gather(*tasks)
end_time = time.time()
print(f"Todos los modelos han sido cargados en {end_time - start_time:.2f} segundos.")
# Instanciar ModelManager y cargar modelos
model_manager = ModelManager()
@app.on_event("startup")
async def startup_event():
await model_manager.load_all_models()
# Modelo global para la solicitud de chat
class ChatRequest(BaseModel):
message: str
top_k: int = 50
top_p: float = 0.95
temperature: float = 0.7
# L铆mite de tokens para respuestas
TOKEN_LIMIT = 1000 # Define el l铆mite de tokens permitido por respuesta
# Funci贸n para generar respuestas de chat
async def generate_chat_response(request, model_data):
try:
user_input = normalize_input(request.message)
llama = model_data['model_data']['model']
tokenizer = model_data['model_data']['tokenizer']
# Generar respuesta de manera r谩pida
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: llama.generate(user_input, max_length=TOKEN_LIMIT, do_sample=True, top_k=request.top_k, top_p=request.top_p, temperature=request.temperature)
)
generated_text = response['generated_text']
# Dividir respuesta larga
split_response = split_long_response(generated_text)
return {"response": split_response, "literal": user_input, "model_name": model_data['name']}
except Exception as e:
print(f"Error al generar la respuesta: {e}")
return {"response": "Error al generar la respuesta", "literal": user_input, "model_name": model_data['name']}
def split_long_response(response):
""" Divide la respuesta en partes m谩s peque帽as si excede el l铆mite de tokens. """
parts = []
while len(response) > TOKEN_LIMIT:
part = response[:TOKEN_LIMIT]
response = response[TOKEN_LIMIT:]
parts.append(part.strip())
if response:
parts.append(response.strip())
return '\n'.join(parts)
def remove_duplicates(text):
""" Elimina duplicados en el texto. """
lines = text.splitlines()
unique_lines = list(dict.fromkeys(lines))
return '\n'.join(unique_lines)
def remove_repetitive_responses(responses):
unique_responses = []
seen_responses = set()
for response in responses:
normalized_response = remove_duplicates(response['response'])
if normalized_response not in seen_responses:
seen_responses.add(normalized_response)
response['response'] = normalized_response
unique_responses.append(response)
return unique_responses
@app.post("/chat")
async def chat(request: ChatRequest):
results = []
for model_data in model_manager.models:
response = await generate_chat_response(request, model_data)
results.append(response)
unique_results = remove_repetitive_responses(results)
return {"results": unique_results}
# Ejecutar la aplicaci贸n FastAPI
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)