File size: 6,786 Bytes
77b3126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import edu.stanford.nlp.ie.AbstractSequenceClassifier;
import edu.stanford.nlp.ie.crf.*;
import edu.stanford.nlp.io.IOUtils;
import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.sequences.DocumentReaderAndWriter;
import edu.stanford.nlp.util.Triple;
import java.util.List;
/** This is a demo of calling CRFClassifier programmatically.
* <p>
* Usage: {@code java -mx400m -cp "*" NERDemo [serializedClassifier [fileName]] }
* <p>
* If arguments aren't specified, they default to
* classifiers/english.all.3class.distsim.crf.ser.gz and some hardcoded sample text.
* If run with arguments, it shows some of the ways to get k-best labelings and
* probabilities out with CRFClassifier. If run without arguments, it shows some of
* the alternative output formats that you can get.
* <p>
* To use CRFClassifier from the command line:
* </p><blockquote>
* {@code java -mx400m edu.stanford.nlp.ie.crf.CRFClassifier -loadClassifier [classifier] -textFile [file] }
* </blockquote><p>
* Or if the file is already tokenized and one word per line, perhaps in
* a tab-separated value format with extra columns for part-of-speech tag,
* etc., use the version below (note the 's' instead of the 'x'):
* </p><blockquote>
* {@code java -mx400m edu.stanford.nlp.ie.crf.CRFClassifier -loadClassifier [classifier] -testFile [file] }
* </blockquote>
*
* @author Jenny Finkel
* @author Christopher Manning
*/
public class NERDemo {
public static void main(String[] args) throws Exception {
String serializedClassifier = "classifiers/english.all.3class.distsim.crf.ser.gz";
if (args.length > 0) {
serializedClassifier = args[0];
}
AbstractSequenceClassifier<CoreLabel> classifier = CRFClassifier.getClassifier(serializedClassifier);
/* For either a file to annotate or for the hardcoded text example, this
demo file shows several ways to process the input, for teaching purposes.
*/
if (args.length > 1) {
/* For the file, it shows (1) how to run NER on a String, (2) how
to get the entities in the String with character offsets, and
(3) how to run NER on a whole file (without loading it into a String).
*/
String fileContents = IOUtils.slurpFile(args[1]);
List<List<CoreLabel>> out = classifier.classify(fileContents);
for (List<CoreLabel> sentence : out) {
for (CoreLabel word : sentence) {
System.out.print(word.word() + '/' + word.get(CoreAnnotations.AnswerAnnotation.class) + ' ');
}
System.out.println();
}
System.out.println("---");
out = classifier.classifyFile(args[1]);
for (List<CoreLabel> sentence : out) {
for (CoreLabel word : sentence) {
System.out.print(word.word() + '/' + word.get(CoreAnnotations.AnswerAnnotation.class) + ' ');
}
System.out.println();
}
System.out.println("---");
List<Triple<String, Integer, Integer>> list = classifier.classifyToCharacterOffsets(fileContents);
for (Triple<String, Integer, Integer> item : list) {
System.out.println(item.first() + ": " + fileContents.substring(item.second(), item.third()));
}
System.out.println("---");
System.out.println("Ten best entity labelings");
DocumentReaderAndWriter<CoreLabel> readerAndWriter = classifier.makePlainTextReaderAndWriter();
classifier.classifyAndWriteAnswersKBest(args[1], 10, readerAndWriter);
System.out.println("---");
System.out.println("Per-token marginalized probabilities");
classifier.printProbs(args[1], readerAndWriter);
// -- This code prints out the first order (token pair) clique probabilities.
// -- But that output is a bit overwhelming, so we leave it commented out by default.
// System.out.println("---");
// System.out.println("First Order Clique Probabilities");
// ((CRFClassifier) classifier).printFirstOrderProbs(args[1], readerAndWriter);
} else {
/* For the hard-coded String, it shows how to run it on a single
sentence, and how to do this and produce several formats, including
slash tags and an inline XML output format. It also shows the full
contents of the {@code CoreLabel}s that are constructed by the
classifier. And it shows getting out the probabilities of different
assignments and an n-best list of classifications with probabilities.
*/
String[] example = {"Good afternoon Rajat Raina, how are you today?",
"I go to school at Stanford University, which is located in California." };
for (String str : example) {
System.out.println(classifier.classifyToString(str));
}
System.out.println("---");
for (String str : example) {
// This one puts in spaces and newlines between tokens, so just print not println.
System.out.print(classifier.classifyToString(str, "slashTags", false));
}
System.out.println("---");
for (String str : example) {
// This one is best for dealing with the output as a TSV (tab-separated column) file.
// The first column gives entities, the second their classes, and the third the remaining text in a document
System.out.print(classifier.classifyToString(str, "tabbedEntities", false));
}
System.out.println("---");
for (String str : example) {
System.out.println(classifier.classifyWithInlineXML(str));
}
System.out.println("---");
for (String str : example) {
System.out.println(classifier.classifyToString(str, "xml", true));
}
System.out.println("---");
for (String str : example) {
System.out.print(classifier.classifyToString(str, "tsv", false));
}
System.out.println("---");
// This gets out entities with character offsets
int j = 0;
for (String str : example) {
j++;
List<Triple<String,Integer,Integer>> triples = classifier.classifyToCharacterOffsets(str);
for (Triple<String,Integer,Integer> trip : triples) {
System.out.printf("%s over character offsets [%d, %d) in sentence %d.%n",
trip.first(), trip.second(), trip.third, j);
}
}
System.out.println("---");
// This prints out all the details of what is stored for each token
int i=0;
for (String str : example) {
for (List<CoreLabel> lcl : classifier.classify(str)) {
for (CoreLabel cl : lcl) {
System.out.print(i++ + ": ");
System.out.println(cl.toShorterString());
}
}
}
System.out.println("---");
}
}
}
|