Unbearablered2727 commited on
Commit
68b3267
1 Parent(s): 055542f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -56
app.py CHANGED
@@ -1,46 +1,38 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
6
 
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
-
26
  generator = torch.Generator().manual_seed(seed)
27
-
28
  image = pipe(
29
  prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
  height = height,
35
- generator = generator
 
 
36
  ).images[0]
37
-
38
- return image
39
-
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
  css="""
@@ -50,17 +42,12 @@ css="""
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
 
66
  with gr.Row():
@@ -76,16 +63,9 @@ with gr.Blocks(css=css) as demo:
76
  run_button = gr.Button("Run", scale=0)
77
 
78
  result = gr.Image(label="Result", show_label=False)
79
-
80
  with gr.Accordion("Advanced Settings", open=False):
81
 
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
  seed = gr.Slider(
90
  label="Seed",
91
  minimum=0,
@@ -103,7 +83,7 @@ with gr.Blocks(css=css) as demo:
103
  minimum=256,
104
  maximum=MAX_IMAGE_SIZE,
105
  step=32,
106
- value=512,
107
  )
108
 
109
  height = gr.Slider(
@@ -111,36 +91,40 @@ with gr.Blocks(css=css) as demo:
111
  minimum=256,
112
  maximum=MAX_IMAGE_SIZE,
113
  step=32,
114
- value=512,
115
  )
116
 
117
  with gr.Row():
118
-
119
  guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
  step=0.1,
124
- value=0.0,
125
  )
126
-
127
  num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
130
- maximum=12,
131
  step=1,
132
- value=2,
133
  )
134
 
135
  gr.Examples(
136
  examples = examples,
137
- inputs = [prompt]
 
 
 
138
  )
139
 
140
- run_button.click(
 
141
  fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
  )
145
 
146
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import spaces
5
  import torch
6
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
7
+ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
 
9
+ dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
+ pipe = DiffusionPipeline.from_pretrained("enhanceaiteam/kalpana", torch_dtype=torch.bfloat16).to(device)
 
 
 
 
 
 
 
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
+ MAX_IMAGE_SIZE = 2048
 
 
16
 
17
+ @spaces.GPU(duration=190)
18
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
19
  if randomize_seed:
20
  seed = random.randint(0, MAX_SEED)
 
21
  generator = torch.Generator().manual_seed(seed)
 
22
  image = pipe(
23
  prompt = prompt,
24
+ width = width,
 
 
 
25
  height = height,
26
+ num_inference_steps = num_inference_steps,
27
+ generator = generator,
28
+ guidance_scale=guidance_scale
29
  ).images[0]
30
+ return image, seed
31
+
 
32
  examples = [
33
+ "a tiny astronaut hatching from an egg on the moon",
34
+ "a cat holding a sign that says hello world",
35
+ "an anime illustration of a wiener schnitzel",
36
  ]
37
 
38
  css="""
 
42
  }
43
  """
44
 
 
 
 
 
 
45
  with gr.Blocks(css=css) as demo:
46
 
47
  with gr.Column(elem_id="col-container"):
48
+ gr.Markdown(f"""# FLUX.1 [dev]
49
+ 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
50
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
51
  """)
52
 
53
  with gr.Row():
 
63
  run_button = gr.Button("Run", scale=0)
64
 
65
  result = gr.Image(label="Result", show_label=False)
66
+
67
  with gr.Accordion("Advanced Settings", open=False):
68
 
 
 
 
 
 
 
 
69
  seed = gr.Slider(
70
  label="Seed",
71
  minimum=0,
 
83
  minimum=256,
84
  maximum=MAX_IMAGE_SIZE,
85
  step=32,
86
+ value=1024,
87
  )
88
 
89
  height = gr.Slider(
 
91
  minimum=256,
92
  maximum=MAX_IMAGE_SIZE,
93
  step=32,
94
+ value=1024,
95
  )
96
 
97
  with gr.Row():
98
+
99
  guidance_scale = gr.Slider(
100
+ label="Guidance Scale",
101
+ minimum=1,
102
+ maximum=15,
103
  step=0.1,
104
+ value=3.5,
105
  )
106
+
107
  num_inference_steps = gr.Slider(
108
  label="Number of inference steps",
109
  minimum=1,
110
+ maximum=50,
111
  step=1,
112
+ value=28,
113
  )
114
 
115
  gr.Examples(
116
  examples = examples,
117
+ fn = infer,
118
+ inputs = [prompt],
119
+ outputs = [result, seed],
120
+ cache_examples="lazy"
121
  )
122
 
123
+ gr.on(
124
+ triggers=[run_button.click, prompt.submit],
125
  fn = infer,
126
+ inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
127
+ outputs = [result, seed]
128
  )
129
 
130
+ demo.launch()