Spaces:
Build error
Build error
File size: 42,368 Bytes
a8b3f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 |
import logging
from argparse import ArgumentTypeError
from datetime import datetime, timezone
from flask import request
from flask_login import current_user
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
from sqlalchemy import asc, desc
from transformers.hf_argparser import string_to_bool
from werkzeug.exceptions import Forbidden, NotFound
import services
from controllers.console import api
from controllers.console.app.error import (
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.datasets.error import (
ArchivedDocumentImmutableError,
DocumentAlreadyFinishedError,
DocumentIndexingError,
IndexingEstimateError,
InvalidActionError,
InvalidMetadataError,
)
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_resource_check,
setup_required,
)
from core.errors.error import (
LLMBadRequestError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.indexing_runner import IndexingRunner
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.rag.extractor.entity.extract_setting import ExtractSetting
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from fields.document_fields import (
dataset_and_document_fields,
document_fields,
document_status_fields,
document_with_segments_fields,
)
from libs.login import login_required
from models import Dataset, DatasetProcessRule, Document, DocumentSegment, UploadFile
from services.dataset_service import DatasetService, DocumentService
from tasks.add_document_to_index_task import add_document_to_index_task
from tasks.remove_document_from_index_task import remove_document_from_index_task
class DocumentResource(Resource):
def get_document(self, dataset_id: str, document_id: str) -> Document:
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound("Document not found.")
if document.tenant_id != current_user.current_tenant_id:
raise Forbidden("No permission.")
return document
def get_batch_documents(self, dataset_id: str, batch: str) -> list[Document]:
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
documents = DocumentService.get_batch_documents(dataset_id, batch)
if not documents:
raise NotFound("Documents not found.")
return documents
class GetProcessRuleApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
req_data = request.args
document_id = req_data.get("document_id")
# get default rules
mode = DocumentService.DEFAULT_RULES["mode"]
rules = DocumentService.DEFAULT_RULES["rules"]
if document_id:
# get the latest process rule
document = Document.query.get_or_404(document_id)
dataset = DatasetService.get_dataset(document.dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# get the latest process rule
dataset_process_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.dataset_id == document.dataset_id)
.order_by(DatasetProcessRule.created_at.desc())
.limit(1)
.one_or_none()
)
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
return {"mode": mode, "rules": rules}
class DatasetDocumentListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id = str(dataset_id)
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
search = request.args.get("keyword", default=None, type=str)
sort = request.args.get("sort", default="-created_at", type=str)
# "yes", "true", "t", "y", "1" convert to True, while others convert to False.
try:
fetch = string_to_bool(request.args.get("fetch", default="false"))
except (ArgumentTypeError, ValueError, Exception) as e:
fetch = False
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id)
if search:
search = f"%{search}%"
query = query.filter(Document.name.like(search))
if sort.startswith("-"):
sort_logic = desc
sort = sort[1:]
else:
sort_logic = asc
if sort == "hit_count":
sub_query = (
db.select(DocumentSegment.document_id, db.func.sum(DocumentSegment.hit_count).label("total_hit_count"))
.group_by(DocumentSegment.document_id)
.subquery()
)
query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id).order_by(
sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0)),
sort_logic(Document.position),
)
elif sort == "created_at":
query = query.order_by(
sort_logic(Document.created_at),
sort_logic(Document.position),
)
else:
query = query.order_by(
desc(Document.created_at),
desc(Document.position),
)
paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
documents = paginated_documents.items
if fetch:
for document in documents:
completed_segments = DocumentSegment.query.filter(
DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != "re_segment",
).count()
total_segments = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
).count()
document.completed_segments = completed_segments
document.total_segments = total_segments
data = marshal(documents, document_with_segments_fields)
else:
data = marshal(documents, document_fields)
response = {
"data": data,
"has_more": len(documents) == limit,
"limit": limit,
"total": paginated_documents.total,
"page": page,
}
return response
documents_and_batch_fields = {"documents": fields.List(fields.Nested(document_fields)), "batch": fields.String}
@setup_required
@login_required
@account_initialization_required
@marshal_with(documents_and_batch_fields)
@cloud_edition_billing_resource_check("vector_space")
def post(self, dataset_id):
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_dataset_editor:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
parser = reqparse.RequestParser()
parser.add_argument(
"indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
)
parser.add_argument("data_source", type=dict, required=False, location="json")
parser.add_argument("process_rule", type=dict, required=False, location="json")
parser.add_argument("duplicate", type=bool, default=True, nullable=False, location="json")
parser.add_argument("original_document_id", type=str, required=False, location="json")
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
parser.add_argument(
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
args = parser.parse_args()
if not dataset.indexing_technique and not args["indexing_technique"]:
raise ValueError("indexing_technique is required.")
# validate args
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
return {"documents": documents, "batch": batch}
class DatasetInitApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(dataset_and_document_fields)
@cloud_edition_billing_resource_check("vector_space")
def post(self):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument(
"indexing_technique",
type=str,
choices=Dataset.INDEXING_TECHNIQUE_LIST,
required=True,
nullable=False,
location="json",
)
parser.add_argument("data_source", type=dict, required=True, nullable=True, location="json")
parser.add_argument("process_rule", type=dict, required=True, nullable=True, location="json")
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
parser.add_argument(
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
if args["indexing_technique"] == "high_quality":
if args["embedding_model"] is None or args["embedding_model_provider"] is None:
raise ValueError("embedding model and embedding model provider are required for high quality indexing.")
try:
model_manager = ModelManager()
model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
)
except InvokeAuthorizationError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# validate args
DocumentService.document_create_args_validate(args)
try:
dataset, documents, batch = DocumentService.save_document_without_dataset_id(
tenant_id=current_user.current_tenant_id, document_data=args, account=current_user
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
response = {"dataset": dataset, "documents": documents, "batch": batch}
return response
class DocumentIndexingEstimateApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
if document.indexing_status in {"completed", "error"}:
raise DocumentAlreadyFinishedError()
data_process_rule = document.dataset_process_rule
data_process_rule_dict = data_process_rule.to_dict()
response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}
if document.data_source_type == "upload_file":
data_source_info = document.data_source_info_dict
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
file = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id)
.first()
)
# raise error if file not found
if not file:
raise NotFound("File not found.")
extract_setting = ExtractSetting(
datasource_type="upload_file", upload_file=file, document_model=document.doc_form
)
indexing_runner = IndexingRunner()
try:
response = indexing_runner.indexing_estimate(
current_user.current_tenant_id,
[extract_setting],
data_process_rule_dict,
document.doc_form,
"English",
dataset_id,
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except Exception as e:
raise IndexingEstimateError(str(e))
return response
class DocumentBatchIndexingEstimateApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, batch):
dataset_id = str(dataset_id)
batch = str(batch)
documents = self.get_batch_documents(dataset_id, batch)
response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}
if not documents:
return response
data_process_rule = documents[0].dataset_process_rule
data_process_rule_dict = data_process_rule.to_dict()
info_list = []
extract_settings = []
for document in documents:
if document.indexing_status in {"completed", "error"}:
raise DocumentAlreadyFinishedError()
data_source_info = document.data_source_info_dict
# format document files info
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
info_list.append(file_id)
# format document notion info
elif (
data_source_info and "notion_workspace_id" in data_source_info and "notion_page_id" in data_source_info
):
pages = []
page = {"page_id": data_source_info["notion_page_id"], "type": data_source_info["type"]}
pages.append(page)
notion_info = {"workspace_id": data_source_info["notion_workspace_id"], "pages": pages}
info_list.append(notion_info)
if document.data_source_type == "upload_file":
file_id = data_source_info["upload_file_id"]
file_detail = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == current_user.current_tenant_id, UploadFile.id == file_id)
.first()
)
if file_detail is None:
raise NotFound("File not found.")
extract_setting = ExtractSetting(
datasource_type="upload_file", upload_file=file_detail, document_model=document.doc_form
)
extract_settings.append(extract_setting)
elif document.data_source_type == "notion_import":
extract_setting = ExtractSetting(
datasource_type="notion_import",
notion_info={
"notion_workspace_id": data_source_info["notion_workspace_id"],
"notion_obj_id": data_source_info["notion_page_id"],
"notion_page_type": data_source_info["type"],
"tenant_id": current_user.current_tenant_id,
},
document_model=document.doc_form,
)
extract_settings.append(extract_setting)
elif document.data_source_type == "website_crawl":
extract_setting = ExtractSetting(
datasource_type="website_crawl",
website_info={
"provider": data_source_info["provider"],
"job_id": data_source_info["job_id"],
"url": data_source_info["url"],
"tenant_id": current_user.current_tenant_id,
"mode": data_source_info["mode"],
"only_main_content": data_source_info["only_main_content"],
},
document_model=document.doc_form,
)
extract_settings.append(extract_setting)
else:
raise ValueError("Data source type not support")
indexing_runner = IndexingRunner()
try:
response = indexing_runner.indexing_estimate(
current_user.current_tenant_id,
extract_settings,
data_process_rule_dict,
document.doc_form,
"English",
dataset_id,
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except Exception as e:
raise IndexingEstimateError(str(e))
return response
class DocumentBatchIndexingStatusApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, batch):
dataset_id = str(dataset_id)
batch = str(batch)
documents = self.get_batch_documents(dataset_id, batch)
documents_status = []
for document in documents:
completed_segments = DocumentSegment.query.filter(
DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != "re_segment",
).count()
total_segments = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
).count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = "paused"
documents_status.append(marshal(document, document_status_fields))
data = {"data": documents_status}
return data
class DocumentIndexingStatusApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
completed_segments = DocumentSegment.query.filter(
DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document_id),
DocumentSegment.status != "re_segment",
).count()
total_segments = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document_id), DocumentSegment.status != "re_segment"
).count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = "paused"
return marshal(document, document_status_fields)
class DocumentDetailApi(DocumentResource):
METADATA_CHOICES = {"all", "only", "without"}
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
metadata = request.args.get("metadata", "all")
if metadata not in self.METADATA_CHOICES:
raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
if metadata == "only":
response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata}
elif metadata == "without":
process_rules = DatasetService.get_process_rules(dataset_id)
data_source_info = document.data_source_detail_dict
response = {
"id": document.id,
"position": document.position,
"data_source_type": document.data_source_type,
"data_source_info": data_source_info,
"dataset_process_rule_id": document.dataset_process_rule_id,
"dataset_process_rule": process_rules,
"name": document.name,
"created_from": document.created_from,
"created_by": document.created_by,
"created_at": document.created_at.timestamp(),
"tokens": document.tokens,
"indexing_status": document.indexing_status,
"completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
"updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
"indexing_latency": document.indexing_latency,
"error": document.error,
"enabled": document.enabled,
"disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
"disabled_by": document.disabled_by,
"archived": document.archived,
"segment_count": document.segment_count,
"average_segment_length": document.average_segment_length,
"hit_count": document.hit_count,
"display_status": document.display_status,
"doc_form": document.doc_form,
"doc_language": document.doc_language,
}
else:
process_rules = DatasetService.get_process_rules(dataset_id)
data_source_info = document.data_source_detail_dict
response = {
"id": document.id,
"position": document.position,
"data_source_type": document.data_source_type,
"data_source_info": data_source_info,
"dataset_process_rule_id": document.dataset_process_rule_id,
"dataset_process_rule": process_rules,
"name": document.name,
"created_from": document.created_from,
"created_by": document.created_by,
"created_at": document.created_at.timestamp(),
"tokens": document.tokens,
"indexing_status": document.indexing_status,
"completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
"updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
"indexing_latency": document.indexing_latency,
"error": document.error,
"enabled": document.enabled,
"disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
"disabled_by": document.disabled_by,
"archived": document.archived,
"doc_type": document.doc_type,
"doc_metadata": document.doc_metadata,
"segment_count": document.segment_count,
"average_segment_length": document.average_segment_length,
"hit_count": document.hit_count,
"display_status": document.display_status,
"doc_form": document.doc_form,
"doc_language": document.doc_language,
}
return response, 200
class DocumentProcessingApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
if action == "pause":
if document.indexing_status != "indexing":
raise InvalidActionError("Document not in indexing state.")
document.paused_by = current_user.id
document.paused_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.is_paused = True
db.session.commit()
elif action == "resume":
if document.indexing_status not in {"paused", "error"}:
raise InvalidActionError("Document not in paused or error state.")
document.paused_by = None
document.paused_at = None
document.is_paused = False
db.session.commit()
else:
raise InvalidActionError()
return {"result": "success"}, 200
class DocumentDeleteApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def delete(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
try:
DocumentService.delete_document(document)
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError("Cannot delete document during indexing.")
return {"result": "success"}, 204
class DocumentMetadataApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def put(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
req_data = request.get_json()
doc_type = req_data.get("doc_type")
doc_metadata = req_data.get("doc_metadata")
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
if doc_type is None or doc_metadata is None:
raise ValueError("Both doc_type and doc_metadata must be provided.")
if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise ValueError("Invalid doc_type.")
if not isinstance(doc_metadata, dict):
raise ValueError("doc_metadata must be a dictionary.")
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]
document.doc_metadata = {}
if doc_type == "others":
document.doc_metadata = doc_metadata
else:
for key, value_type in metadata_schema.items():
value = doc_metadata.get(key)
if value is not None and isinstance(value, value_type):
document.doc_metadata[key] = value
document.doc_type = doc_type
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
return {"result": "success", "message": "Document metadata updated."}, 200
class DocumentStatusApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_dataset_editor:
raise Forbidden()
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check user's permission
DatasetService.check_dataset_permission(dataset, current_user)
document = self.get_document(dataset_id, document_id)
indexing_cache_key = "document_{}_indexing".format(document.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise InvalidActionError("Document is being indexed, please try again later")
if action == "enable":
if document.enabled:
raise InvalidActionError("Document already enabled.")
document.enabled = True
document.disabled_at = None
document.disabled_by = None
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
add_document_to_index_task.delay(document_id)
return {"result": "success"}, 200
elif action == "disable":
if not document.completed_at or document.indexing_status != "completed":
raise InvalidActionError("Document is not completed.")
if not document.enabled:
raise InvalidActionError("Document already disabled.")
document.enabled = False
document.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.disabled_by = current_user.id
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
remove_document_from_index_task.delay(document_id)
return {"result": "success"}, 200
elif action == "archive":
if document.archived:
raise InvalidActionError("Document already archived.")
document.archived = True
document.archived_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.archived_by = current_user.id
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
if document.enabled:
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
remove_document_from_index_task.delay(document_id)
return {"result": "success"}, 200
elif action == "un_archive":
if not document.archived:
raise InvalidActionError("Document is not archived.")
document.archived = False
document.archived_at = None
document.archived_by = None
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
add_document_to_index_task.delay(document_id)
return {"result": "success"}, 200
else:
raise InvalidActionError()
class DocumentPauseApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""pause document."""
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
document = DocumentService.get_document(dataset.id, document_id)
# 404 if document not found
if document is None:
raise NotFound("Document Not Exists.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
try:
# pause document
DocumentService.pause_document(document)
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError("Cannot pause completed document.")
return {"result": "success"}, 204
class DocumentRecoverApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""recover document."""
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
document = DocumentService.get_document(dataset.id, document_id)
# 404 if document not found
if document is None:
raise NotFound("Document Not Exists.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
try:
# pause document
DocumentService.recover_document(document)
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError("Document is not in paused status.")
return {"result": "success"}, 204
class DocumentRetryApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def post(self, dataset_id):
"""retry document."""
parser = reqparse.RequestParser()
parser.add_argument("document_ids", type=list, required=True, nullable=False, location="json")
args = parser.parse_args()
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
retry_documents = []
if not dataset:
raise NotFound("Dataset not found.")
for document_id in args["document_ids"]:
try:
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
# 404 if document not found
if document is None:
raise NotFound("Document Not Exists.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
# 400 if document is completed
if document.indexing_status == "completed":
raise DocumentAlreadyFinishedError()
retry_documents.append(document)
except Exception as e:
logging.error(f"Document {document_id} retry failed: {str(e)}")
continue
# retry document
DocumentService.retry_document(dataset_id, retry_documents)
return {"result": "success"}, 204
class DocumentRenameApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(document_fields)
def post(self, dataset_id, document_id):
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_operator_permission(current_user, dataset)
parser = reqparse.RequestParser()
parser.add_argument("name", type=str, required=True, nullable=False, location="json")
args = parser.parse_args()
try:
document = DocumentService.rename_document(dataset_id, document_id, args["name"])
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError("Cannot delete document during indexing.")
return document
class WebsiteDocumentSyncApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
"""sync website document."""
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound("Document not found.")
if document.tenant_id != current_user.current_tenant_id:
raise Forbidden("No permission.")
if document.data_source_type != "website_crawl":
raise ValueError("Document is not a website document.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
# sync document
DocumentService.sync_website_document(dataset_id, document)
return {"result": "success"}, 200
api.add_resource(GetProcessRuleApi, "/datasets/process-rule")
api.add_resource(DatasetDocumentListApi, "/datasets/<uuid:dataset_id>/documents")
api.add_resource(DatasetInitApi, "/datasets/init")
api.add_resource(
DocumentIndexingEstimateApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate"
)
api.add_resource(DocumentBatchIndexingEstimateApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate")
api.add_resource(DocumentBatchIndexingStatusApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status")
api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status")
api.add_resource(DocumentDetailApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
api.add_resource(
DocumentProcessingApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>"
)
api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
api.add_resource(DocumentMetadataApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata")
api.add_resource(DocumentStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>")
api.add_resource(DocumentPauseApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause")
api.add_resource(DocumentRecoverApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume")
api.add_resource(DocumentRetryApi, "/datasets/<uuid:dataset_id>/retry")
api.add_resource(DocumentRenameApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/rename")
api.add_resource(WebsiteDocumentSyncApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/website-sync")
|