Spaces:
Build error
Build error
File size: 12,486 Bytes
a8b3f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import json
from collections.abc import Mapping
from copy import deepcopy
from datetime import datetime, timezone
from mimetypes import guess_type
from typing import Any, Optional, Union
from yarl import URL
from core.app.entities.app_invoke_entities import InvokeFrom
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
from core.file import FileType
from core.file.models import FileTransferMethod
from core.ops.ops_trace_manager import TraceQueueManager
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, ToolInvokeMeta, ToolParameter
from core.tools.errors import (
ToolEngineInvokeError,
ToolInvokeError,
ToolNotFoundError,
ToolNotSupportedError,
ToolParameterValidationError,
ToolProviderCredentialValidationError,
ToolProviderNotFoundError,
)
from core.tools.tool.tool import Tool
from core.tools.tool.workflow_tool import WorkflowTool
from core.tools.utils.message_transformer import ToolFileMessageTransformer
from extensions.ext_database import db
from models.enums import CreatedByRole
from models.model import Message, MessageFile
class ToolEngine:
"""
Tool runtime engine take care of the tool executions.
"""
@staticmethod
def agent_invoke(
tool: Tool,
tool_parameters: Union[str, dict],
user_id: str,
tenant_id: str,
message: Message,
invoke_from: InvokeFrom,
agent_tool_callback: DifyAgentCallbackHandler,
trace_manager: Optional[TraceQueueManager] = None,
) -> tuple[str, list[tuple[MessageFile, bool]], ToolInvokeMeta]:
"""
Agent invokes the tool with the given arguments.
"""
# check if arguments is a string
if isinstance(tool_parameters, str):
# check if this tool has only one parameter
parameters = [
parameter
for parameter in tool.get_runtime_parameters() or []
if parameter.form == ToolParameter.ToolParameterForm.LLM
]
if parameters and len(parameters) == 1:
tool_parameters = {parameters[0].name: tool_parameters}
else:
raise ValueError(f"tool_parameters should be a dict, but got a string: {tool_parameters}")
# invoke the tool
try:
# hit the callback handler
agent_tool_callback.on_tool_start(tool_name=tool.identity.name, tool_inputs=tool_parameters)
meta, response = ToolEngine._invoke(tool, tool_parameters, user_id)
response = ToolFileMessageTransformer.transform_tool_invoke_messages(
messages=response, user_id=user_id, tenant_id=tenant_id, conversation_id=message.conversation_id
)
# extract binary data from tool invoke message
binary_files = ToolEngine._extract_tool_response_binary(response)
# create message file
message_files = ToolEngine._create_message_files(
tool_messages=binary_files, agent_message=message, invoke_from=invoke_from, user_id=user_id
)
plain_text = ToolEngine._convert_tool_response_to_str(response)
# hit the callback handler
agent_tool_callback.on_tool_end(
tool_name=tool.identity.name,
tool_inputs=tool_parameters,
tool_outputs=plain_text,
message_id=message.id,
trace_manager=trace_manager,
)
# transform tool invoke message to get LLM friendly message
return plain_text, message_files, meta
except ToolProviderCredentialValidationError as e:
error_response = "Please check your tool provider credentials"
agent_tool_callback.on_tool_error(e)
except (ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError) as e:
error_response = f"there is not a tool named {tool.identity.name}"
agent_tool_callback.on_tool_error(e)
except ToolParameterValidationError as e:
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
agent_tool_callback.on_tool_error(e)
except ToolInvokeError as e:
error_response = f"tool invoke error: {e}"
agent_tool_callback.on_tool_error(e)
except ToolEngineInvokeError as e:
meta = e.args[0]
error_response = f"tool invoke error: {meta.error}"
agent_tool_callback.on_tool_error(e)
return error_response, [], meta
except Exception as e:
error_response = f"unknown error: {e}"
agent_tool_callback.on_tool_error(e)
return error_response, [], ToolInvokeMeta.error_instance(error_response)
@staticmethod
def workflow_invoke(
tool: Tool,
tool_parameters: Mapping[str, Any],
user_id: str,
workflow_tool_callback: DifyWorkflowCallbackHandler,
workflow_call_depth: int,
thread_pool_id: Optional[str] = None,
) -> list[ToolInvokeMessage]:
"""
Workflow invokes the tool with the given arguments.
"""
try:
# hit the callback handler
assert tool.identity is not None
workflow_tool_callback.on_tool_start(tool_name=tool.identity.name, tool_inputs=tool_parameters)
if isinstance(tool, WorkflowTool):
tool.workflow_call_depth = workflow_call_depth + 1
tool.thread_pool_id = thread_pool_id
if tool.runtime and tool.runtime.runtime_parameters:
tool_parameters = {**tool.runtime.runtime_parameters, **tool_parameters}
response = tool.invoke(user_id=user_id, tool_parameters=tool_parameters)
# hit the callback handler
workflow_tool_callback.on_tool_end(
tool_name=tool.identity.name,
tool_inputs=tool_parameters,
tool_outputs=response,
)
return response
except Exception as e:
workflow_tool_callback.on_tool_error(e)
raise e
@staticmethod
def _invoke(tool: Tool, tool_parameters: dict, user_id: str) -> tuple[ToolInvokeMeta, list[ToolInvokeMessage]]:
"""
Invoke the tool with the given arguments.
"""
started_at = datetime.now(timezone.utc)
meta = ToolInvokeMeta(
time_cost=0.0,
error=None,
tool_config={
"tool_name": tool.identity.name,
"tool_provider": tool.identity.provider,
"tool_provider_type": tool.tool_provider_type().value,
"tool_parameters": deepcopy(tool.runtime.runtime_parameters),
"tool_icon": tool.identity.icon,
},
)
try:
response = tool.invoke(user_id, tool_parameters)
except Exception as e:
meta.error = str(e)
raise ToolEngineInvokeError(meta)
finally:
ended_at = datetime.now(timezone.utc)
meta.time_cost = (ended_at - started_at).total_seconds()
return meta, response
@staticmethod
def _convert_tool_response_to_str(tool_response: list[ToolInvokeMessage]) -> str:
"""
Handle tool response
"""
result = ""
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.TEXT:
result += response.message
elif response.type == ToolInvokeMessage.MessageType.LINK:
result += f"result link: {response.message}. please tell user to check it."
elif response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
result += (
"image has been created and sent to user already, you do not need to create it,"
" just tell the user to check it now."
)
elif response.type == ToolInvokeMessage.MessageType.JSON:
result += f"tool response: {json.dumps(response.message, ensure_ascii=False)}."
else:
result += f"tool response: {response.message}."
return result
@staticmethod
def _extract_tool_response_binary(tool_response: list[ToolInvokeMessage]) -> list[ToolInvokeMessageBinary]:
"""
Extract tool response binary
"""
result = []
for response in tool_response:
if response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
mimetype = None
if response.meta.get("mime_type"):
mimetype = response.meta.get("mime_type")
else:
try:
url = URL(response.message)
extension = url.suffix
guess_type_result, _ = guess_type(f"a{extension}")
if guess_type_result:
mimetype = guess_type_result
except Exception:
pass
if not mimetype:
mimetype = "image/jpeg"
result.append(
ToolInvokeMessageBinary(
mimetype=response.meta.get("mime_type", "image/jpeg"),
url=response.message,
save_as=response.save_as,
)
)
elif response.type == ToolInvokeMessage.MessageType.BLOB:
result.append(
ToolInvokeMessageBinary(
mimetype=response.meta.get("mime_type", "octet/stream"),
url=response.message,
save_as=response.save_as,
)
)
elif response.type == ToolInvokeMessage.MessageType.LINK:
# check if there is a mime type in meta
if response.meta and "mime_type" in response.meta:
result.append(
ToolInvokeMessageBinary(
mimetype=response.meta.get("mime_type", "octet/stream")
if response.meta
else "octet/stream",
url=response.message,
save_as=response.save_as,
)
)
return result
@staticmethod
def _create_message_files(
tool_messages: list[ToolInvokeMessageBinary],
agent_message: Message,
invoke_from: InvokeFrom,
user_id: str,
) -> list[tuple[Any, str]]:
"""
Create message file
:param messages: messages
:return: message files, should save as variable
"""
result = []
for message in tool_messages:
if "image" in message.mimetype:
file_type = FileType.IMAGE
elif "video" in message.mimetype:
file_type = FileType.VIDEO
elif "audio" in message.mimetype:
file_type = FileType.AUDIO
elif "text" in message.mimetype or "pdf" in message.mimetype:
file_type = FileType.DOCUMENT
else:
file_type = FileType.CUSTOM
# extract tool file id from url
tool_file_id = message.url.split("/")[-1].split(".")[0]
message_file = MessageFile(
message_id=agent_message.id,
type=file_type,
transfer_method=FileTransferMethod.TOOL_FILE,
belongs_to="assistant",
url=message.url,
upload_file_id=tool_file_id,
created_by_role=(
CreatedByRole.ACCOUNT
if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
else CreatedByRole.END_USER
),
created_by=user_id,
)
db.session.add(message_file)
db.session.commit()
db.session.refresh(message_file)
result.append((message_file.id, message.save_as))
db.session.close()
return result
|