Spaces:
Build error
Build error
File size: 9,650 Bytes
a8b3f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from typing import Optional
from flask import Flask
from pydantic import BaseModel
from configs import dify_config
from core.entities.provider_entities import QuotaUnit, RestrictModel
from core.model_runtime.entities.model_entities import ModelType
from models.provider import ProviderQuotaType
class HostingQuota(BaseModel):
quota_type: ProviderQuotaType
restrict_models: list[RestrictModel] = []
class TrialHostingQuota(HostingQuota):
quota_type: ProviderQuotaType = ProviderQuotaType.TRIAL
quota_limit: int = 0
"""Quota limit for the hosting provider models. -1 means unlimited."""
class PaidHostingQuota(HostingQuota):
quota_type: ProviderQuotaType = ProviderQuotaType.PAID
class FreeHostingQuota(HostingQuota):
quota_type: ProviderQuotaType = ProviderQuotaType.FREE
class HostingProvider(BaseModel):
enabled: bool = False
credentials: Optional[dict] = None
quota_unit: Optional[QuotaUnit] = None
quotas: list[HostingQuota] = []
class HostedModerationConfig(BaseModel):
enabled: bool = False
providers: list[str] = []
class HostingConfiguration:
provider_map: dict[str, HostingProvider] = {}
moderation_config: HostedModerationConfig = None
def init_app(self, app: Flask) -> None:
if dify_config.EDITION != "CLOUD":
return
self.provider_map["azure_openai"] = self.init_azure_openai()
self.provider_map["openai"] = self.init_openai()
self.provider_map["anthropic"] = self.init_anthropic()
self.provider_map["minimax"] = self.init_minimax()
self.provider_map["spark"] = self.init_spark()
self.provider_map["zhipuai"] = self.init_zhipuai()
self.moderation_config = self.init_moderation_config()
@staticmethod
def init_azure_openai() -> HostingProvider:
quota_unit = QuotaUnit.TIMES
if dify_config.HOSTED_AZURE_OPENAI_ENABLED:
credentials = {
"openai_api_key": dify_config.HOSTED_AZURE_OPENAI_API_KEY,
"openai_api_base": dify_config.HOSTED_AZURE_OPENAI_API_BASE,
"base_model_name": "gpt-35-turbo",
}
quotas = []
hosted_quota_limit = dify_config.HOSTED_AZURE_OPENAI_QUOTA_LIMIT
trial_quota = TrialHostingQuota(
quota_limit=hosted_quota_limit,
restrict_models=[
RestrictModel(model="gpt-4", base_model_name="gpt-4", model_type=ModelType.LLM),
RestrictModel(model="gpt-4o", base_model_name="gpt-4o", model_type=ModelType.LLM),
RestrictModel(model="gpt-4o-mini", base_model_name="gpt-4o-mini", model_type=ModelType.LLM),
RestrictModel(model="gpt-4-32k", base_model_name="gpt-4-32k", model_type=ModelType.LLM),
RestrictModel(
model="gpt-4-1106-preview", base_model_name="gpt-4-1106-preview", model_type=ModelType.LLM
),
RestrictModel(
model="gpt-4-vision-preview", base_model_name="gpt-4-vision-preview", model_type=ModelType.LLM
),
RestrictModel(model="gpt-35-turbo", base_model_name="gpt-35-turbo", model_type=ModelType.LLM),
RestrictModel(
model="gpt-35-turbo-1106", base_model_name="gpt-35-turbo-1106", model_type=ModelType.LLM
),
RestrictModel(
model="gpt-35-turbo-instruct", base_model_name="gpt-35-turbo-instruct", model_type=ModelType.LLM
),
RestrictModel(
model="gpt-35-turbo-16k", base_model_name="gpt-35-turbo-16k", model_type=ModelType.LLM
),
RestrictModel(
model="text-davinci-003", base_model_name="text-davinci-003", model_type=ModelType.LLM
),
RestrictModel(
model="text-embedding-ada-002",
base_model_name="text-embedding-ada-002",
model_type=ModelType.TEXT_EMBEDDING,
),
RestrictModel(
model="text-embedding-3-small",
base_model_name="text-embedding-3-small",
model_type=ModelType.TEXT_EMBEDDING,
),
RestrictModel(
model="text-embedding-3-large",
base_model_name="text-embedding-3-large",
model_type=ModelType.TEXT_EMBEDDING,
),
],
)
quotas.append(trial_quota)
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
def init_openai(self) -> HostingProvider:
quota_unit = QuotaUnit.CREDITS
quotas = []
if dify_config.HOSTED_OPENAI_TRIAL_ENABLED:
hosted_quota_limit = dify_config.HOSTED_OPENAI_QUOTA_LIMIT
trial_models = self.parse_restrict_models_from_env("HOSTED_OPENAI_TRIAL_MODELS")
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit, restrict_models=trial_models)
quotas.append(trial_quota)
if dify_config.HOSTED_OPENAI_PAID_ENABLED:
paid_models = self.parse_restrict_models_from_env("HOSTED_OPENAI_PAID_MODELS")
paid_quota = PaidHostingQuota(restrict_models=paid_models)
quotas.append(paid_quota)
if len(quotas) > 0:
credentials = {
"openai_api_key": dify_config.HOSTED_OPENAI_API_KEY,
}
if dify_config.HOSTED_OPENAI_API_BASE:
credentials["openai_api_base"] = dify_config.HOSTED_OPENAI_API_BASE
if dify_config.HOSTED_OPENAI_API_ORGANIZATION:
credentials["openai_organization"] = dify_config.HOSTED_OPENAI_API_ORGANIZATION
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
@staticmethod
def init_anthropic() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
quotas = []
if dify_config.HOSTED_ANTHROPIC_TRIAL_ENABLED:
hosted_quota_limit = dify_config.HOSTED_ANTHROPIC_QUOTA_LIMIT
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit)
quotas.append(trial_quota)
if dify_config.HOSTED_ANTHROPIC_PAID_ENABLED:
paid_quota = PaidHostingQuota()
quotas.append(paid_quota)
if len(quotas) > 0:
credentials = {
"anthropic_api_key": dify_config.HOSTED_ANTHROPIC_API_KEY,
}
if dify_config.HOSTED_ANTHROPIC_API_BASE:
credentials["anthropic_api_url"] = dify_config.HOSTED_ANTHROPIC_API_BASE
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
@staticmethod
def init_minimax() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if dify_config.HOSTED_MINIMAX_ENABLED:
quotas = [FreeHostingQuota()]
return HostingProvider(
enabled=True,
credentials=None, # use credentials from the provider
quota_unit=quota_unit,
quotas=quotas,
)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
@staticmethod
def init_spark() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if dify_config.HOSTED_SPARK_ENABLED:
quotas = [FreeHostingQuota()]
return HostingProvider(
enabled=True,
credentials=None, # use credentials from the provider
quota_unit=quota_unit,
quotas=quotas,
)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
@staticmethod
def init_zhipuai() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if dify_config.HOSTED_ZHIPUAI_ENABLED:
quotas = [FreeHostingQuota()]
return HostingProvider(
enabled=True,
credentials=None, # use credentials from the provider
quota_unit=quota_unit,
quotas=quotas,
)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
@staticmethod
def init_moderation_config() -> HostedModerationConfig:
if dify_config.HOSTED_MODERATION_ENABLED and dify_config.HOSTED_MODERATION_PROVIDERS:
return HostedModerationConfig(enabled=True, providers=dify_config.HOSTED_MODERATION_PROVIDERS.split(","))
return HostedModerationConfig(enabled=False)
@staticmethod
def parse_restrict_models_from_env(env_var: str) -> list[RestrictModel]:
models_str = dify_config.model_dump().get(env_var)
models_list = models_str.split(",") if models_str else []
return [
RestrictModel(model=model_name.strip(), model_type=ModelType.LLM)
for model_name in models_list
if model_name.strip()
]
|