File size: 25,228 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import json
from typing import Optional

from core.app.app_config.entities import (
    DatasetEntity,
    DatasetRetrieveConfigEntity,
    EasyUIBasedAppConfig,
    ExternalDataVariableEntity,
    ModelConfigEntity,
    PromptTemplateEntity,
    VariableEntity,
)
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManager
from core.app.apps.chat.app_config_manager import ChatAppConfigManager
from core.app.apps.completion.app_config_manager import CompletionAppConfigManager
from core.file.models import FileExtraConfig
from core.helper import encrypter
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.simple_prompt_transform import SimplePromptTransform
from core.workflow.nodes import NodeType
from events.app_event import app_was_created
from extensions.ext_database import db
from models.account import Account
from models.api_based_extension import APIBasedExtension, APIBasedExtensionPoint
from models.model import App, AppMode, AppModelConfig
from models.workflow import Workflow, WorkflowType


class WorkflowConverter:
    """
    App Convert to Workflow Mode
    """

    def convert_to_workflow(
        self, app_model: App, account: Account, name: str, icon_type: str, icon: str, icon_background: str
    ):
        """
        Convert app to workflow

        - basic mode of chatbot app

        - expert mode of chatbot app

        - completion app

        :param app_model: App instance
        :param account: Account
        :param name: new app name
        :param icon: new app icon
        :param icon_type: new app icon type
        :param icon_background: new app icon background
        :return: new App instance
        """
        # convert app model config
        if not app_model.app_model_config:
            raise ValueError("App model config is required")

        workflow = self.convert_app_model_config_to_workflow(
            app_model=app_model, app_model_config=app_model.app_model_config, account_id=account.id
        )

        # create new app
        new_app = App()
        new_app.tenant_id = app_model.tenant_id
        new_app.name = name or app_model.name + "(workflow)"
        new_app.mode = AppMode.ADVANCED_CHAT.value if app_model.mode == AppMode.CHAT.value else AppMode.WORKFLOW.value
        new_app.icon_type = icon_type or app_model.icon_type
        new_app.icon = icon or app_model.icon
        new_app.icon_background = icon_background or app_model.icon_background
        new_app.enable_site = app_model.enable_site
        new_app.enable_api = app_model.enable_api
        new_app.api_rpm = app_model.api_rpm
        new_app.api_rph = app_model.api_rph
        new_app.is_demo = False
        new_app.is_public = app_model.is_public
        new_app.created_by = account.id
        new_app.updated_by = account.id
        db.session.add(new_app)
        db.session.flush()
        db.session.commit()

        workflow.app_id = new_app.id
        db.session.commit()

        app_was_created.send(new_app, account=account)

        return new_app

    def convert_app_model_config_to_workflow(self, app_model: App, app_model_config: AppModelConfig, account_id: str):
        """
        Convert app model config to workflow mode
        :param app_model: App instance
        :param app_model_config: AppModelConfig instance
        :param account_id: Account ID
        """
        # get new app mode
        new_app_mode = self._get_new_app_mode(app_model)

        # convert app model config
        app_config = self._convert_to_app_config(app_model=app_model, app_model_config=app_model_config)

        # init workflow graph
        graph = {"nodes": [], "edges": []}

        # Convert list:
        # - variables -> start
        # - model_config -> llm
        # - prompt_template -> llm
        # - file_upload -> llm
        # - external_data_variables -> http-request
        # - dataset -> knowledge-retrieval
        # - show_retrieve_source -> knowledge-retrieval

        # convert to start node
        start_node = self._convert_to_start_node(variables=app_config.variables)

        graph["nodes"].append(start_node)

        # convert to http request node
        external_data_variable_node_mapping = {}
        if app_config.external_data_variables:
            http_request_nodes, external_data_variable_node_mapping = self._convert_to_http_request_node(
                app_model=app_model,
                variables=app_config.variables,
                external_data_variables=app_config.external_data_variables,
            )

            for http_request_node in http_request_nodes:
                graph = self._append_node(graph, http_request_node)

        # convert to knowledge retrieval node
        if app_config.dataset:
            knowledge_retrieval_node = self._convert_to_knowledge_retrieval_node(
                new_app_mode=new_app_mode, dataset_config=app_config.dataset, model_config=app_config.model
            )

            if knowledge_retrieval_node:
                graph = self._append_node(graph, knowledge_retrieval_node)

        # convert to llm node
        llm_node = self._convert_to_llm_node(
            original_app_mode=AppMode.value_of(app_model.mode),
            new_app_mode=new_app_mode,
            graph=graph,
            model_config=app_config.model,
            prompt_template=app_config.prompt_template,
            file_upload=app_config.additional_features.file_upload,
            external_data_variable_node_mapping=external_data_variable_node_mapping,
        )

        graph = self._append_node(graph, llm_node)

        if new_app_mode == AppMode.WORKFLOW:
            # convert to end node by app mode
            end_node = self._convert_to_end_node()
            graph = self._append_node(graph, end_node)
        else:
            answer_node = self._convert_to_answer_node()
            graph = self._append_node(graph, answer_node)

        app_model_config_dict = app_config.app_model_config_dict

        # features
        if new_app_mode == AppMode.ADVANCED_CHAT:
            features = {
                "opening_statement": app_model_config_dict.get("opening_statement"),
                "suggested_questions": app_model_config_dict.get("suggested_questions"),
                "suggested_questions_after_answer": app_model_config_dict.get("suggested_questions_after_answer"),
                "speech_to_text": app_model_config_dict.get("speech_to_text"),
                "text_to_speech": app_model_config_dict.get("text_to_speech"),
                "file_upload": app_model_config_dict.get("file_upload"),
                "sensitive_word_avoidance": app_model_config_dict.get("sensitive_word_avoidance"),
                "retriever_resource": app_model_config_dict.get("retriever_resource"),
            }
        else:
            features = {
                "text_to_speech": app_model_config_dict.get("text_to_speech"),
                "file_upload": app_model_config_dict.get("file_upload"),
                "sensitive_word_avoidance": app_model_config_dict.get("sensitive_word_avoidance"),
            }

        # create workflow record
        workflow = Workflow(
            tenant_id=app_model.tenant_id,
            app_id=app_model.id,
            type=WorkflowType.from_app_mode(new_app_mode).value,
            version="draft",
            graph=json.dumps(graph),
            features=json.dumps(features),
            created_by=account_id,
            environment_variables=[],
            conversation_variables=[],
        )

        db.session.add(workflow)
        db.session.commit()

        return workflow

    def _convert_to_app_config(self, app_model: App, app_model_config: AppModelConfig) -> EasyUIBasedAppConfig:
        app_mode = AppMode.value_of(app_model.mode)
        if app_mode == AppMode.AGENT_CHAT or app_model.is_agent:
            app_model.mode = AppMode.AGENT_CHAT.value
            app_config = AgentChatAppConfigManager.get_app_config(
                app_model=app_model, app_model_config=app_model_config
            )
        elif app_mode == AppMode.CHAT:
            app_config = ChatAppConfigManager.get_app_config(app_model=app_model, app_model_config=app_model_config)
        elif app_mode == AppMode.COMPLETION:
            app_config = CompletionAppConfigManager.get_app_config(
                app_model=app_model, app_model_config=app_model_config
            )
        else:
            raise ValueError("Invalid app mode")

        return app_config

    def _convert_to_start_node(self, variables: list[VariableEntity]) -> dict:
        """
        Convert to Start Node
        :param variables: list of variables
        :return:
        """
        return {
            "id": "start",
            "position": None,
            "data": {
                "title": "START",
                "type": NodeType.START.value,
                "variables": [jsonable_encoder(v) for v in variables],
            },
        }

    def _convert_to_http_request_node(
        self, app_model: App, variables: list[VariableEntity], external_data_variables: list[ExternalDataVariableEntity]
    ) -> tuple[list[dict], dict[str, str]]:
        """
        Convert API Based Extension to HTTP Request Node
        :param app_model: App instance
        :param variables: list of variables
        :param external_data_variables: list of external data variables
        :return:
        """
        index = 1
        nodes = []
        external_data_variable_node_mapping = {}
        tenant_id = app_model.tenant_id
        for external_data_variable in external_data_variables:
            tool_type = external_data_variable.type
            if tool_type != "api":
                continue

            tool_variable = external_data_variable.variable
            tool_config = external_data_variable.config

            # get params from config
            api_based_extension_id = tool_config.get("api_based_extension_id")
            if not api_based_extension_id:
                continue

            # get api_based_extension
            api_based_extension = self._get_api_based_extension(
                tenant_id=tenant_id, api_based_extension_id=api_based_extension_id
            )

            # decrypt api_key
            api_key = encrypter.decrypt_token(tenant_id=tenant_id, token=api_based_extension.api_key)

            inputs = {}
            for v in variables:
                inputs[v.variable] = "{{#start." + v.variable + "#}}"

            request_body = {
                "point": APIBasedExtensionPoint.APP_EXTERNAL_DATA_TOOL_QUERY.value,
                "params": {
                    "app_id": app_model.id,
                    "tool_variable": tool_variable,
                    "inputs": inputs,
                    "query": "{{#sys.query#}}" if app_model.mode == AppMode.CHAT.value else "",
                },
            }

            request_body_json = json.dumps(request_body)
            request_body_json = request_body_json.replace(r"\{\{", "{{").replace(r"\}\}", "}}")

            http_request_node = {
                "id": f"http_request_{index}",
                "position": None,
                "data": {
                    "title": f"HTTP REQUEST {api_based_extension.name}",
                    "type": NodeType.HTTP_REQUEST.value,
                    "method": "post",
                    "url": api_based_extension.api_endpoint,
                    "authorization": {"type": "api-key", "config": {"type": "bearer", "api_key": api_key}},
                    "headers": "",
                    "params": "",
                    "body": {"type": "json", "data": request_body_json},
                },
            }

            nodes.append(http_request_node)

            # append code node for response body parsing
            code_node = {
                "id": f"code_{index}",
                "position": None,
                "data": {
                    "title": f"Parse {api_based_extension.name} Response",
                    "type": NodeType.CODE.value,
                    "variables": [{"variable": "response_json", "value_selector": [http_request_node["id"], "body"]}],
                    "code_language": "python3",
                    "code": "import json\n\ndef main(response_json: str) -> str:\n    response_body = json.loads("
                    'response_json)\n    return {\n        "result": response_body["result"]\n    }',
                    "outputs": {"result": {"type": "string"}},
                },
            }

            nodes.append(code_node)

            external_data_variable_node_mapping[external_data_variable.variable] = code_node["id"]
            index += 1

        return nodes, external_data_variable_node_mapping

    def _convert_to_knowledge_retrieval_node(
        self, new_app_mode: AppMode, dataset_config: DatasetEntity, model_config: ModelConfigEntity
    ) -> Optional[dict]:
        """
        Convert datasets to Knowledge Retrieval Node
        :param new_app_mode: new app mode
        :param dataset_config: dataset
        :param model_config: model config
        :return:
        """
        retrieve_config = dataset_config.retrieve_config
        if new_app_mode == AppMode.ADVANCED_CHAT:
            query_variable_selector = ["sys", "query"]
        elif retrieve_config.query_variable:
            # fetch query variable
            query_variable_selector = ["start", retrieve_config.query_variable]
        else:
            return None

        return {
            "id": "knowledge_retrieval",
            "position": None,
            "data": {
                "title": "KNOWLEDGE RETRIEVAL",
                "type": NodeType.KNOWLEDGE_RETRIEVAL.value,
                "query_variable_selector": query_variable_selector,
                "dataset_ids": dataset_config.dataset_ids,
                "retrieval_mode": retrieve_config.retrieve_strategy.value,
                "single_retrieval_config": {
                    "model": {
                        "provider": model_config.provider,
                        "name": model_config.model,
                        "mode": model_config.mode,
                        "completion_params": {
                            **model_config.parameters,
                            "stop": model_config.stop,
                        },
                    }
                }
                if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE
                else None,
                "multiple_retrieval_config": {
                    "top_k": retrieve_config.top_k,
                    "score_threshold": retrieve_config.score_threshold,
                    "reranking_model": retrieve_config.reranking_model,
                }
                if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE
                else None,
            },
        }

    def _convert_to_llm_node(
        self,
        original_app_mode: AppMode,
        new_app_mode: AppMode,
        graph: dict,
        model_config: ModelConfigEntity,
        prompt_template: PromptTemplateEntity,
        file_upload: Optional[FileExtraConfig] = None,
        external_data_variable_node_mapping: dict[str, str] | None = None,
    ) -> dict:
        """
        Convert to LLM Node
        :param original_app_mode: original app mode
        :param new_app_mode: new app mode
        :param graph: graph
        :param model_config: model config
        :param prompt_template: prompt template
        :param file_upload: file upload config (optional)
        :param external_data_variable_node_mapping: external data variable node mapping
        """
        # fetch start and knowledge retrieval node
        start_node = next(filter(lambda n: n["data"]["type"] == NodeType.START.value, graph["nodes"]))
        knowledge_retrieval_node = next(
            filter(lambda n: n["data"]["type"] == NodeType.KNOWLEDGE_RETRIEVAL.value, graph["nodes"]), None
        )

        role_prefix = None

        # Chat Model
        if model_config.mode == LLMMode.CHAT.value:
            if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
                if not prompt_template.simple_prompt_template:
                    raise ValueError("Simple prompt template is required")
                # get prompt template
                prompt_transform = SimplePromptTransform()
                prompt_template_config = prompt_transform.get_prompt_template(
                    app_mode=original_app_mode,
                    provider=model_config.provider,
                    model=model_config.model,
                    pre_prompt=prompt_template.simple_prompt_template,
                    has_context=knowledge_retrieval_node is not None,
                    query_in_prompt=False,
                )

                template = prompt_template_config["prompt_template"].template
                if not template:
                    prompts = []
                else:
                    template = self._replace_template_variables(
                        template, start_node["data"]["variables"], external_data_variable_node_mapping
                    )

                    prompts = [{"role": "user", "text": template}]
            else:
                advanced_chat_prompt_template = prompt_template.advanced_chat_prompt_template

                prompts = []
                if advanced_chat_prompt_template:
                    for m in advanced_chat_prompt_template.messages:
                        text = m.text
                        text = self._replace_template_variables(
                            text, start_node["data"]["variables"], external_data_variable_node_mapping
                        )

                        prompts.append({"role": m.role.value, "text": text})
        # Completion Model
        else:
            if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
                if not prompt_template.simple_prompt_template:
                    raise ValueError("Simple prompt template is required")
                # get prompt template
                prompt_transform = SimplePromptTransform()
                prompt_template_config = prompt_transform.get_prompt_template(
                    app_mode=original_app_mode,
                    provider=model_config.provider,
                    model=model_config.model,
                    pre_prompt=prompt_template.simple_prompt_template,
                    has_context=knowledge_retrieval_node is not None,
                    query_in_prompt=False,
                )

                template = prompt_template_config["prompt_template"].template
                template = self._replace_template_variables(
                    template=template,
                    variables=start_node["data"]["variables"],
                    external_data_variable_node_mapping=external_data_variable_node_mapping,
                )

                prompts = {"text": template}

                prompt_rules = prompt_template_config["prompt_rules"]
                role_prefix = {
                    "user": prompt_rules.get("human_prefix", "Human"),
                    "assistant": prompt_rules.get("assistant_prefix", "Assistant"),
                }
            else:
                advanced_completion_prompt_template = prompt_template.advanced_completion_prompt_template
                if advanced_completion_prompt_template:
                    text = advanced_completion_prompt_template.prompt
                    text = self._replace_template_variables(
                        template=text,
                        variables=start_node["data"]["variables"],
                        external_data_variable_node_mapping=external_data_variable_node_mapping,
                    )
                else:
                    text = ""

                text = text.replace("{{#query#}}", "{{#sys.query#}}")

                prompts = {
                    "text": text,
                }

                if advanced_completion_prompt_template and advanced_completion_prompt_template.role_prefix:
                    role_prefix = {
                        "user": advanced_completion_prompt_template.role_prefix.user,
                        "assistant": advanced_completion_prompt_template.role_prefix.assistant,
                    }

        memory = None
        if new_app_mode == AppMode.ADVANCED_CHAT:
            memory = {"role_prefix": role_prefix, "window": {"enabled": False}}

        completion_params = model_config.parameters
        completion_params.update({"stop": model_config.stop})
        return {
            "id": "llm",
            "position": None,
            "data": {
                "title": "LLM",
                "type": NodeType.LLM.value,
                "model": {
                    "provider": model_config.provider,
                    "name": model_config.model,
                    "mode": model_config.mode,
                    "completion_params": completion_params,
                },
                "prompt_template": prompts,
                "memory": memory,
                "context": {
                    "enabled": knowledge_retrieval_node is not None,
                    "variable_selector": ["knowledge_retrieval", "result"]
                    if knowledge_retrieval_node is not None
                    else None,
                },
                "vision": {
                    "enabled": file_upload is not None,
                    "variable_selector": ["sys", "files"] if file_upload is not None else None,
                    "configs": {"detail": file_upload.image_config.detail}
                    if file_upload is not None and file_upload.image_config is not None
                    else None,
                },
            },
        }

    def _replace_template_variables(
        self, template: str, variables: list[dict], external_data_variable_node_mapping: dict[str, str] | None = None
    ) -> str:
        """
        Replace Template Variables
        :param template: template
        :param variables: list of variables
        :param external_data_variable_node_mapping: external data variable node mapping
        :return:
        """
        for v in variables:
            template = template.replace("{{" + v["variable"] + "}}", "{{#start." + v["variable"] + "#}}")

        if external_data_variable_node_mapping:
            for variable, code_node_id in external_data_variable_node_mapping.items():
                template = template.replace("{{" + variable + "}}", "{{#" + code_node_id + ".result#}}")

        return template

    def _convert_to_end_node(self) -> dict:
        """
        Convert to End Node
        :return:
        """
        # for original completion app
        return {
            "id": "end",
            "position": None,
            "data": {
                "title": "END",
                "type": NodeType.END.value,
                "outputs": [{"variable": "result", "value_selector": ["llm", "text"]}],
            },
        }

    def _convert_to_answer_node(self) -> dict:
        """
        Convert to Answer Node
        :return:
        """
        # for original chat app
        return {
            "id": "answer",
            "position": None,
            "data": {"title": "ANSWER", "type": NodeType.ANSWER.value, "answer": "{{#llm.text#}}"},
        }

    def _create_edge(self, source: str, target: str) -> dict:
        """
        Create Edge
        :param source: source node id
        :param target: target node id
        :return:
        """
        return {"id": f"{source}-{target}", "source": source, "target": target}

    def _append_node(self, graph: dict, node: dict) -> dict:
        """
        Append Node to Graph

        :param graph: Graph, include: nodes, edges
        :param node: Node to append
        :return:
        """
        previous_node = graph["nodes"][-1]
        graph["nodes"].append(node)
        graph["edges"].append(self._create_edge(previous_node["id"], node["id"]))
        return graph

    def _get_new_app_mode(self, app_model: App) -> AppMode:
        """
        Get new app mode
        :param app_model: App instance
        :return: AppMode
        """
        if app_model.mode == AppMode.COMPLETION.value:
            return AppMode.WORKFLOW
        else:
            return AppMode.ADVANCED_CHAT

    def _get_api_based_extension(self, tenant_id: str, api_based_extension_id: str):
        """
        Get API Based Extension
        :param tenant_id: tenant id
        :param api_based_extension_id: api based extension id
        :return:
        """
        api_based_extension = (
            db.session.query(APIBasedExtension)
            .filter(APIBasedExtension.tenant_id == tenant_id, APIBasedExtension.id == api_based_extension_id)
            .first()
        )

        if not api_based_extension:
            raise ValueError(f"API Based Extension not found, id: {api_based_extension_id}")

        return api_based_extension