Spaces:
Build error
Build error
File size: 28,973 Bytes
a8b3f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
import flask_restful
from flask import request
from flask_login import current_user
from flask_restful import Resource, marshal, marshal_with, reqparse
from werkzeug.exceptions import Forbidden, NotFound
import services
from configs import dify_config
from controllers.console import api
from controllers.console.apikey import api_key_fields, api_key_list
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.datasets.error import DatasetInUseError, DatasetNameDuplicateError, IndexingEstimateError
from controllers.console.wraps import account_initialization_required, setup_required
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.indexing_runner import IndexingRunner
from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from extensions.ext_database import db
from fields.app_fields import related_app_list
from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
from fields.document_fields import document_status_fields
from libs.login import login_required
from models import ApiToken, Dataset, Document, DocumentSegment, UploadFile
from models.dataset import DatasetPermissionEnum
from services.dataset_service import DatasetPermissionService, DatasetService, DocumentService
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 40:
raise ValueError("Name must be between 1 to 40 characters.")
return name
def _validate_description_length(description):
if len(description) > 400:
raise ValueError("Description cannot exceed 400 characters.")
return description
class DatasetListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
ids = request.args.getlist("ids")
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
if ids:
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
else:
datasets, total = DatasetService.get_datasets(
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
)
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
embedding_models = configurations.get_models(model_type=ModelType.TEXT_EMBEDDING, only_active=True)
model_names = []
for embedding_model in embedding_models:
model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
data = marshal(datasets, dataset_detail_fields)
for item in data:
if item["indexing_technique"] == "high_quality":
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
if item_model in model_names:
item["embedding_available"] = True
else:
item["embedding_available"] = False
else:
item["embedding_available"] = True
if item.get("permission") == "partial_members":
part_users_list = DatasetPermissionService.get_dataset_partial_member_list(item["id"])
item.update({"partial_member_list": part_users_list})
else:
item.update({"partial_member_list": []})
response = {"data": data, "has_more": len(datasets) == limit, "limit": limit, "total": total, "page": page}
return response, 200
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument(
"name",
nullable=False,
required=True,
help="type is required. Name must be between 1 to 40 characters.",
type=_validate_name,
)
parser.add_argument(
"description",
type=str,
nullable=True,
required=False,
default="",
)
parser.add_argument(
"indexing_technique",
type=str,
location="json",
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
help="Invalid indexing technique.",
)
parser.add_argument(
"external_knowledge_api_id",
type=str,
nullable=True,
required=False,
)
parser.add_argument(
"provider",
type=str,
nullable=True,
choices=Dataset.PROVIDER_LIST,
required=False,
default="vendor",
)
parser.add_argument(
"external_knowledge_id",
type=str,
nullable=True,
required=False,
)
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
try:
dataset = DatasetService.create_empty_dataset(
tenant_id=current_user.current_tenant_id,
name=args["name"],
description=args["description"],
indexing_technique=args["indexing_technique"],
account=current_user,
permission=DatasetPermissionEnum.ONLY_ME,
provider=args["provider"],
external_knowledge_api_id=args["external_knowledge_api_id"],
external_knowledge_id=args["external_knowledge_id"],
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
return marshal(dataset, dataset_detail_fields), 201
class DatasetApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
data = marshal(dataset, dataset_detail_fields)
if data.get("permission") == "partial_members":
part_users_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
data.update({"partial_member_list": part_users_list})
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
embedding_models = configurations.get_models(model_type=ModelType.TEXT_EMBEDDING, only_active=True)
model_names = []
for embedding_model in embedding_models:
model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
if data["indexing_technique"] == "high_quality":
item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
if item_model in model_names:
data["embedding_available"] = True
else:
data["embedding_available"] = False
else:
data["embedding_available"] = True
if data.get("permission") == "partial_members":
part_users_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
data.update({"partial_member_list": part_users_list})
return data, 200
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
parser = reqparse.RequestParser()
parser.add_argument(
"name",
nullable=False,
help="type is required. Name must be between 1 to 40 characters.",
type=_validate_name,
)
parser.add_argument("description", location="json", store_missing=False, type=_validate_description_length)
parser.add_argument(
"indexing_technique",
type=str,
location="json",
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
help="Invalid indexing technique.",
)
parser.add_argument(
"permission",
type=str,
location="json",
choices=(DatasetPermissionEnum.ONLY_ME, DatasetPermissionEnum.ALL_TEAM, DatasetPermissionEnum.PARTIAL_TEAM),
help="Invalid permission.",
)
parser.add_argument("embedding_model", type=str, location="json", help="Invalid embedding model.")
parser.add_argument(
"embedding_model_provider", type=str, location="json", help="Invalid embedding model provider."
)
parser.add_argument("retrieval_model", type=dict, location="json", help="Invalid retrieval model.")
parser.add_argument("partial_member_list", type=list, location="json", help="Invalid parent user list.")
parser.add_argument(
"external_retrieval_model",
type=dict,
required=False,
nullable=True,
location="json",
help="Invalid external retrieval model.",
)
parser.add_argument(
"external_knowledge_id",
type=str,
required=False,
nullable=True,
location="json",
help="Invalid external knowledge id.",
)
parser.add_argument(
"external_knowledge_api_id",
type=str,
required=False,
nullable=True,
location="json",
help="Invalid external knowledge api id.",
)
args = parser.parse_args()
data = request.get_json()
# check embedding model setting
if data.get("indexing_technique") == "high_quality":
DatasetService.check_embedding_model_setting(
dataset.tenant_id, data.get("embedding_model_provider"), data.get("embedding_model")
)
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
DatasetPermissionService.check_permission(
current_user, dataset, data.get("permission"), data.get("partial_member_list")
)
dataset = DatasetService.update_dataset(dataset_id_str, args, current_user)
if dataset is None:
raise NotFound("Dataset not found.")
result_data = marshal(dataset, dataset_detail_fields)
tenant_id = current_user.current_tenant_id
if data.get("partial_member_list") and data.get("permission") == "partial_members":
DatasetPermissionService.update_partial_member_list(
tenant_id, dataset_id_str, data.get("partial_member_list")
)
# clear partial member list when permission is only_me or all_team_members
elif (
data.get("permission") == DatasetPermissionEnum.ONLY_ME
or data.get("permission") == DatasetPermissionEnum.ALL_TEAM
):
DatasetPermissionService.clear_partial_member_list(dataset_id_str)
partial_member_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
result_data.update({"partial_member_list": partial_member_list})
return result_data, 200
@setup_required
@login_required
@account_initialization_required
def delete(self, dataset_id):
dataset_id_str = str(dataset_id)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor or current_user.is_dataset_operator:
raise Forbidden()
try:
if DatasetService.delete_dataset(dataset_id_str, current_user):
DatasetPermissionService.clear_partial_member_list(dataset_id_str)
return {"result": "success"}, 204
else:
raise NotFound("Dataset not found.")
except services.errors.dataset.DatasetInUseError:
raise DatasetInUseError()
class DatasetUseCheckApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset_is_using = DatasetService.dataset_use_check(dataset_id_str)
return {"is_using": dataset_is_using}, 200
class DatasetQueryApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
dataset_queries, total = DatasetService.get_dataset_queries(dataset_id=dataset.id, page=page, per_page=limit)
response = {
"data": marshal(dataset_queries, dataset_query_detail_fields),
"has_more": len(dataset_queries) == limit,
"limit": limit,
"total": total,
"page": page,
}
return response, 200
class DatasetIndexingEstimateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("info_list", type=dict, required=True, nullable=True, location="json")
parser.add_argument("process_rule", type=dict, required=True, nullable=True, location="json")
parser.add_argument(
"indexing_technique",
type=str,
required=True,
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
location="json",
)
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
parser.add_argument("dataset_id", type=str, required=False, nullable=False, location="json")
parser.add_argument(
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
args = parser.parse_args()
# validate args
DocumentService.estimate_args_validate(args)
extract_settings = []
if args["info_list"]["data_source_type"] == "upload_file":
file_ids = args["info_list"]["file_info_list"]["file_ids"]
file_details = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == current_user.current_tenant_id, UploadFile.id.in_(file_ids))
.all()
)
if file_details is None:
raise NotFound("File not found.")
if file_details:
for file_detail in file_details:
extract_setting = ExtractSetting(
datasource_type="upload_file", upload_file=file_detail, document_model=args["doc_form"]
)
extract_settings.append(extract_setting)
elif args["info_list"]["data_source_type"] == "notion_import":
notion_info_list = args["info_list"]["notion_info_list"]
for notion_info in notion_info_list:
workspace_id = notion_info["workspace_id"]
for page in notion_info["pages"]:
extract_setting = ExtractSetting(
datasource_type="notion_import",
notion_info={
"notion_workspace_id": workspace_id,
"notion_obj_id": page["page_id"],
"notion_page_type": page["type"],
"tenant_id": current_user.current_tenant_id,
},
document_model=args["doc_form"],
)
extract_settings.append(extract_setting)
elif args["info_list"]["data_source_type"] == "website_crawl":
website_info_list = args["info_list"]["website_info_list"]
for url in website_info_list["urls"]:
extract_setting = ExtractSetting(
datasource_type="website_crawl",
website_info={
"provider": website_info_list["provider"],
"job_id": website_info_list["job_id"],
"url": url,
"tenant_id": current_user.current_tenant_id,
"mode": "crawl",
"only_main_content": website_info_list["only_main_content"],
},
document_model=args["doc_form"],
)
extract_settings.append(extract_setting)
else:
raise ValueError("Data source type not support")
indexing_runner = IndexingRunner()
try:
response = indexing_runner.indexing_estimate(
current_user.current_tenant_id,
extract_settings,
args["process_rule"],
args["doc_form"],
args["doc_language"],
args["dataset_id"],
args["indexing_technique"],
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except Exception as e:
raise IndexingEstimateError(str(e))
return response, 200
class DatasetRelatedAppListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(related_app_list)
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
app_dataset_joins = DatasetService.get_related_apps(dataset.id)
related_apps = []
for app_dataset_join in app_dataset_joins:
app_model = app_dataset_join.app
if app_model:
related_apps.append(app_model)
return {"data": related_apps, "total": len(related_apps)}, 200
class DatasetIndexingStatusApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id = str(dataset_id)
documents = (
db.session.query(Document)
.filter(Document.dataset_id == dataset_id, Document.tenant_id == current_user.current_tenant_id)
.all()
)
documents_status = []
for document in documents:
completed_segments = DocumentSegment.query.filter(
DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != "re_segment",
).count()
total_segments = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
).count()
document.completed_segments = completed_segments
document.total_segments = total_segments
documents_status.append(marshal(document, document_status_fields))
data = {"data": documents_status}
return data
class DatasetApiKeyApi(Resource):
max_keys = 10
token_prefix = "dataset-"
resource_type = "dataset"
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_key_list)
def get(self):
keys = (
db.session.query(ApiToken)
.filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id)
.all()
)
return {"items": keys}
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_key_fields)
def post(self):
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
current_key_count = (
db.session.query(ApiToken)
.filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id)
.count()
)
if current_key_count >= self.max_keys:
flask_restful.abort(
400,
message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
code="max_keys_exceeded",
)
key = ApiToken.generate_api_key(self.token_prefix, 24)
api_token = ApiToken()
api_token.tenant_id = current_user.current_tenant_id
api_token.token = key
api_token.type = self.resource_type
db.session.add(api_token)
db.session.commit()
return api_token, 200
class DatasetApiDeleteApi(Resource):
resource_type = "dataset"
@setup_required
@login_required
@account_initialization_required
def delete(self, api_key_id):
api_key_id = str(api_key_id)
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
key = (
db.session.query(ApiToken)
.filter(
ApiToken.tenant_id == current_user.current_tenant_id,
ApiToken.type == self.resource_type,
ApiToken.id == api_key_id,
)
.first()
)
if key is None:
flask_restful.abort(404, message="API key not found")
db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()
db.session.commit()
return {"result": "success"}, 204
class DatasetApiBaseUrlApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
return {"api_base_url": (dify_config.SERVICE_API_URL or request.host_url.rstrip("/")) + "/v1"}
class DatasetRetrievalSettingApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
vector_type = dify_config.VECTOR_STORE
match vector_type:
case (
VectorType.MILVUS
| VectorType.RELYT
| VectorType.PGVECTOR
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
| VectorType.TENCENT
| VectorType.PGVECTO_RS
| VectorType.BAIDU
| VectorType.VIKINGDB
| VectorType.UPSTASH
| VectorType.OCEANBASE
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (
VectorType.QDRANT
| VectorType.WEAVIATE
| VectorType.OPENSEARCH
| VectorType.ANALYTICDB
| VectorType.MYSCALE
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
| VectorType.PGVECTOR
| VectorType.TIDB_ON_QDRANT
| VectorType.LINDORM
| VectorType.COUCHBASE
):
return {
"retrieval_method": [
RetrievalMethod.SEMANTIC_SEARCH.value,
RetrievalMethod.FULL_TEXT_SEARCH.value,
RetrievalMethod.HYBRID_SEARCH.value,
]
}
case _:
raise ValueError(f"Unsupported vector db type {vector_type}.")
class DatasetRetrievalSettingMockApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, vector_type):
match vector_type:
case (
VectorType.MILVUS
| VectorType.RELYT
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
| VectorType.TENCENT
| VectorType.PGVECTO_RS
| VectorType.BAIDU
| VectorType.VIKINGDB
| VectorType.UPSTASH
| VectorType.OCEANBASE
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (
VectorType.QDRANT
| VectorType.WEAVIATE
| VectorType.OPENSEARCH
| VectorType.ANALYTICDB
| VectorType.MYSCALE
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
| VectorType.COUCHBASE
| VectorType.PGVECTOR
| VectorType.LINDORM
):
return {
"retrieval_method": [
RetrievalMethod.SEMANTIC_SEARCH.value,
RetrievalMethod.FULL_TEXT_SEARCH.value,
RetrievalMethod.HYBRID_SEARCH.value,
]
}
case _:
raise ValueError(f"Unsupported vector db type {vector_type}.")
class DatasetErrorDocs(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
results = DocumentService.get_error_documents_by_dataset_id(dataset_id_str)
return {"data": [marshal(item, document_status_fields) for item in results], "total": len(results)}, 200
class DatasetPermissionUserListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
partial_members_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
return {
"data": partial_members_list,
}, 200
api.add_resource(DatasetListApi, "/datasets")
api.add_resource(DatasetApi, "/datasets/<uuid:dataset_id>")
api.add_resource(DatasetUseCheckApi, "/datasets/<uuid:dataset_id>/use-check")
api.add_resource(DatasetQueryApi, "/datasets/<uuid:dataset_id>/queries")
api.add_resource(DatasetErrorDocs, "/datasets/<uuid:dataset_id>/error-docs")
api.add_resource(DatasetIndexingEstimateApi, "/datasets/indexing-estimate")
api.add_resource(DatasetRelatedAppListApi, "/datasets/<uuid:dataset_id>/related-apps")
api.add_resource(DatasetIndexingStatusApi, "/datasets/<uuid:dataset_id>/indexing-status")
api.add_resource(DatasetApiKeyApi, "/datasets/api-keys")
api.add_resource(DatasetApiDeleteApi, "/datasets/api-keys/<uuid:api_key_id>")
api.add_resource(DatasetApiBaseUrlApi, "/datasets/api-base-info")
api.add_resource(DatasetRetrievalSettingApi, "/datasets/retrieval-setting")
api.add_resource(DatasetRetrievalSettingMockApi, "/datasets/retrieval-setting/<string:vector_type>")
api.add_resource(DatasetPermissionUserListApi, "/datasets/<uuid:dataset_id>/permission-part-users")
|