File size: 18,126 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import uuid
from datetime import datetime, timezone

import pandas as pd
from flask import request
from flask_login import current_user
from flask_restful import Resource, marshal, reqparse
from werkzeug.exceptions import Forbidden, NotFound

import services
from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.datasets.error import InvalidActionError, NoFileUploadedError, TooManyFilesError
from controllers.console.wraps import (
    account_initialization_required,
    cloud_edition_billing_knowledge_limit_check,
    cloud_edition_billing_resource_check,
    setup_required,
)
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from fields.segment_fields import segment_fields
from libs.login import login_required
from models import DocumentSegment
from services.dataset_service import DatasetService, DocumentService, SegmentService
from tasks.batch_create_segment_to_index_task import batch_create_segment_to_index_task
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
from tasks.enable_segment_to_index_task import enable_segment_to_index_task


class DatasetDocumentSegmentListApi(Resource):
    @setup_required
    @login_required
    @account_initialization_required
    def get(self, dataset_id, document_id):
        dataset_id = str(dataset_id)
        document_id = str(document_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")

        try:
            DatasetService.check_dataset_permission(dataset, current_user)
        except services.errors.account.NoPermissionError as e:
            raise Forbidden(str(e))

        document = DocumentService.get_document(dataset_id, document_id)

        if not document:
            raise NotFound("Document not found.")

        parser = reqparse.RequestParser()
        parser.add_argument("last_id", type=str, default=None, location="args")
        parser.add_argument("limit", type=int, default=20, location="args")
        parser.add_argument("status", type=str, action="append", default=[], location="args")
        parser.add_argument("hit_count_gte", type=int, default=None, location="args")
        parser.add_argument("enabled", type=str, default="all", location="args")
        parser.add_argument("keyword", type=str, default=None, location="args")
        args = parser.parse_args()

        last_id = args["last_id"]
        limit = min(args["limit"], 100)
        status_list = args["status"]
        hit_count_gte = args["hit_count_gte"]
        keyword = args["keyword"]

        query = DocumentSegment.query.filter(
            DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id
        )

        if last_id is not None:
            last_segment = db.session.get(DocumentSegment, str(last_id))
            if last_segment:
                query = query.filter(DocumentSegment.position > last_segment.position)
            else:
                return {"data": [], "has_more": False, "limit": limit}, 200

        if status_list:
            query = query.filter(DocumentSegment.status.in_(status_list))

        if hit_count_gte is not None:
            query = query.filter(DocumentSegment.hit_count >= hit_count_gte)

        if keyword:
            query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))

        if args["enabled"].lower() != "all":
            if args["enabled"].lower() == "true":
                query = query.filter(DocumentSegment.enabled == True)
            elif args["enabled"].lower() == "false":
                query = query.filter(DocumentSegment.enabled == False)

        total = query.count()
        segments = query.order_by(DocumentSegment.position).limit(limit + 1).all()

        has_more = False
        if len(segments) > limit:
            has_more = True
            segments = segments[:-1]

        return {
            "data": marshal(segments, segment_fields),
            "doc_form": document.doc_form,
            "has_more": has_more,
            "limit": limit,
            "total": total,
        }, 200


class DatasetDocumentSegmentApi(Resource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_resource_check("vector_space")
    def patch(self, dataset_id, segment_id, action):
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        # check user's model setting
        DatasetService.check_dataset_model_setting(dataset)
        # The role of the current user in the ta table must be admin, owner, or editor
        if not current_user.is_editor:
            raise Forbidden()

        try:
            DatasetService.check_dataset_permission(dataset, current_user)
        except services.errors.account.NoPermissionError as e:
            raise Forbidden(str(e))
        if dataset.indexing_technique == "high_quality":
            # check embedding model setting
            try:
                model_manager = ModelManager()
                model_manager.get_model_instance(
                    tenant_id=current_user.current_tenant_id,
                    provider=dataset.embedding_model_provider,
                    model_type=ModelType.TEXT_EMBEDDING,
                    model=dataset.embedding_model,
                )
            except LLMBadRequestError:
                raise ProviderNotInitializeError(
                    "No Embedding Model available. Please configure a valid provider "
                    "in the Settings -> Model Provider."
                )
            except ProviderTokenNotInitError as ex:
                raise ProviderNotInitializeError(ex.description)

        segment = DocumentSegment.query.filter(
            DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
        ).first()

        if not segment:
            raise NotFound("Segment not found.")

        if segment.status != "completed":
            raise NotFound("Segment is not completed, enable or disable function is not allowed")

        document_indexing_cache_key = "document_{}_indexing".format(segment.document_id)
        cache_result = redis_client.get(document_indexing_cache_key)
        if cache_result is not None:
            raise InvalidActionError("Document is being indexed, please try again later")

        indexing_cache_key = "segment_{}_indexing".format(segment.id)
        cache_result = redis_client.get(indexing_cache_key)
        if cache_result is not None:
            raise InvalidActionError("Segment is being indexed, please try again later")

        if action == "enable":
            if segment.enabled:
                raise InvalidActionError("Segment is already enabled.")

            segment.enabled = True
            segment.disabled_at = None
            segment.disabled_by = None
            db.session.commit()

            # Set cache to prevent indexing the same segment multiple times
            redis_client.setex(indexing_cache_key, 600, 1)

            enable_segment_to_index_task.delay(segment.id)

            return {"result": "success"}, 200
        elif action == "disable":
            if not segment.enabled:
                raise InvalidActionError("Segment is already disabled.")

            segment.enabled = False
            segment.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None)
            segment.disabled_by = current_user.id
            db.session.commit()

            # Set cache to prevent indexing the same segment multiple times
            redis_client.setex(indexing_cache_key, 600, 1)

            disable_segment_from_index_task.delay(segment.id)

            return {"result": "success"}, 200
        else:
            raise InvalidActionError()


class DatasetDocumentSegmentAddApi(Resource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_resource_check("vector_space")
    @cloud_edition_billing_knowledge_limit_check("add_segment")
    def post(self, dataset_id, document_id):
        # check dataset
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        # check document
        document_id = str(document_id)
        document = DocumentService.get_document(dataset_id, document_id)
        if not document:
            raise NotFound("Document not found.")
        if not current_user.is_editor:
            raise Forbidden()
        # check embedding model setting
        if dataset.indexing_technique == "high_quality":
            try:
                model_manager = ModelManager()
                model_manager.get_model_instance(
                    tenant_id=current_user.current_tenant_id,
                    provider=dataset.embedding_model_provider,
                    model_type=ModelType.TEXT_EMBEDDING,
                    model=dataset.embedding_model,
                )
            except LLMBadRequestError:
                raise ProviderNotInitializeError(
                    "No Embedding Model available. Please configure a valid provider "
                    "in the Settings -> Model Provider."
                )
            except ProviderTokenNotInitError as ex:
                raise ProviderNotInitializeError(ex.description)
        try:
            DatasetService.check_dataset_permission(dataset, current_user)
        except services.errors.account.NoPermissionError as e:
            raise Forbidden(str(e))
        # validate args
        parser = reqparse.RequestParser()
        parser.add_argument("content", type=str, required=True, nullable=False, location="json")
        parser.add_argument("answer", type=str, required=False, nullable=True, location="json")
        parser.add_argument("keywords", type=list, required=False, nullable=True, location="json")
        args = parser.parse_args()
        SegmentService.segment_create_args_validate(args, document)
        segment = SegmentService.create_segment(args, document, dataset)
        return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200


class DatasetDocumentSegmentUpdateApi(Resource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_resource_check("vector_space")
    def patch(self, dataset_id, document_id, segment_id):
        # check dataset
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        # check user's model setting
        DatasetService.check_dataset_model_setting(dataset)
        # check document
        document_id = str(document_id)
        document = DocumentService.get_document(dataset_id, document_id)
        if not document:
            raise NotFound("Document not found.")
        if dataset.indexing_technique == "high_quality":
            # check embedding model setting
            try:
                model_manager = ModelManager()
                model_manager.get_model_instance(
                    tenant_id=current_user.current_tenant_id,
                    provider=dataset.embedding_model_provider,
                    model_type=ModelType.TEXT_EMBEDDING,
                    model=dataset.embedding_model,
                )
            except LLMBadRequestError:
                raise ProviderNotInitializeError(
                    "No Embedding Model available. Please configure a valid provider "
                    "in the Settings -> Model Provider."
                )
            except ProviderTokenNotInitError as ex:
                raise ProviderNotInitializeError(ex.description)
            # check segment
        segment_id = str(segment_id)
        segment = DocumentSegment.query.filter(
            DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
        ).first()
        if not segment:
            raise NotFound("Segment not found.")
        # The role of the current user in the ta table must be admin, owner, or editor
        if not current_user.is_editor:
            raise Forbidden()
        try:
            DatasetService.check_dataset_permission(dataset, current_user)
        except services.errors.account.NoPermissionError as e:
            raise Forbidden(str(e))
        # validate args
        parser = reqparse.RequestParser()
        parser.add_argument("content", type=str, required=True, nullable=False, location="json")
        parser.add_argument("answer", type=str, required=False, nullable=True, location="json")
        parser.add_argument("keywords", type=list, required=False, nullable=True, location="json")
        args = parser.parse_args()
        SegmentService.segment_create_args_validate(args, document)
        segment = SegmentService.update_segment(args, segment, document, dataset)
        return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200

    @setup_required
    @login_required
    @account_initialization_required
    def delete(self, dataset_id, document_id, segment_id):
        # check dataset
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        # check user's model setting
        DatasetService.check_dataset_model_setting(dataset)
        # check document
        document_id = str(document_id)
        document = DocumentService.get_document(dataset_id, document_id)
        if not document:
            raise NotFound("Document not found.")
        # check segment
        segment_id = str(segment_id)
        segment = DocumentSegment.query.filter(
            DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
        ).first()
        if not segment:
            raise NotFound("Segment not found.")
        # The role of the current user in the ta table must be admin or owner
        if not current_user.is_editor:
            raise Forbidden()
        try:
            DatasetService.check_dataset_permission(dataset, current_user)
        except services.errors.account.NoPermissionError as e:
            raise Forbidden(str(e))
        SegmentService.delete_segment(segment, document, dataset)
        return {"result": "success"}, 200


class DatasetDocumentSegmentBatchImportApi(Resource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_resource_check("vector_space")
    @cloud_edition_billing_knowledge_limit_check("add_segment")
    def post(self, dataset_id, document_id):
        # check dataset
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        # check document
        document_id = str(document_id)
        document = DocumentService.get_document(dataset_id, document_id)
        if not document:
            raise NotFound("Document not found.")
        # get file from request
        file = request.files["file"]
        # check file
        if "file" not in request.files:
            raise NoFileUploadedError()

        if len(request.files) > 1:
            raise TooManyFilesError()
        # check file type
        if not file.filename.endswith(".csv"):
            raise ValueError("Invalid file type. Only CSV files are allowed")

        try:
            # Skip the first row
            df = pd.read_csv(file)
            result = []
            for index, row in df.iterrows():
                if document.doc_form == "qa_model":
                    data = {"content": row[0], "answer": row[1]}
                else:
                    data = {"content": row[0]}
                result.append(data)
            if len(result) == 0:
                raise ValueError("The CSV file is empty.")
            # async job
            job_id = str(uuid.uuid4())
            indexing_cache_key = "segment_batch_import_{}".format(str(job_id))
            # send batch add segments task
            redis_client.setnx(indexing_cache_key, "waiting")
            batch_create_segment_to_index_task.delay(
                str(job_id), result, dataset_id, document_id, current_user.current_tenant_id, current_user.id
            )
        except Exception as e:
            return {"error": str(e)}, 500
        return {"job_id": job_id, "job_status": "waiting"}, 200

    @setup_required
    @login_required
    @account_initialization_required
    def get(self, job_id):
        job_id = str(job_id)
        indexing_cache_key = "segment_batch_import_{}".format(job_id)
        cache_result = redis_client.get(indexing_cache_key)
        if cache_result is None:
            raise ValueError("The job is not exist.")

        return {"job_id": job_id, "job_status": cache_result.decode()}, 200


api.add_resource(DatasetDocumentSegmentListApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
api.add_resource(DatasetDocumentSegmentApi, "/datasets/<uuid:dataset_id>/segments/<uuid:segment_id>/<string:action>")
api.add_resource(DatasetDocumentSegmentAddApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segment")
api.add_resource(
    DatasetDocumentSegmentUpdateApi,
    "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>",
)
api.add_resource(
    DatasetDocumentSegmentBatchImportApi,
    "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/batch_import",
    "/datasets/batch_import_status/<uuid:job_id>",
)