Spaces:
Build error
Build error
import datetime | |
import logging | |
import time | |
import click | |
from celery import shared_task | |
from configs import dify_config | |
from core.indexing_runner import DocumentIsPausedError, IndexingRunner | |
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory | |
from extensions.ext_database import db | |
from models.dataset import Dataset, Document, DocumentSegment | |
from services.feature_service import FeatureService | |
def duplicate_document_indexing_task(dataset_id: str, document_ids: list): | |
""" | |
Async process document | |
:param dataset_id: | |
:param document_ids: | |
Usage: duplicate_document_indexing_task.delay(dataset_id, document_id) | |
""" | |
documents = [] | |
start_at = time.perf_counter() | |
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() | |
# check document limit | |
features = FeatureService.get_features(dataset.tenant_id) | |
try: | |
if features.billing.enabled: | |
vector_space = features.vector_space | |
count = len(document_ids) | |
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT) | |
if count > batch_upload_limit: | |
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") | |
if 0 < vector_space.limit <= vector_space.size: | |
raise ValueError( | |
"Your total number of documents plus the number of uploads have over the limit of " | |
"your subscription." | |
) | |
except Exception as e: | |
for document_id in document_ids: | |
document = ( | |
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first() | |
) | |
if document: | |
document.indexing_status = "error" | |
document.error = str(e) | |
document.stopped_at = datetime.datetime.utcnow() | |
db.session.add(document) | |
db.session.commit() | |
return | |
for document_id in document_ids: | |
logging.info(click.style("Start process document: {}".format(document_id), fg="green")) | |
document = ( | |
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first() | |
) | |
if document: | |
# clean old data | |
index_type = document.doc_form | |
index_processor = IndexProcessorFactory(index_type).init_index_processor() | |
segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all() | |
if segments: | |
index_node_ids = [segment.index_node_id for segment in segments] | |
# delete from vector index | |
index_processor.clean(dataset, index_node_ids) | |
for segment in segments: | |
db.session.delete(segment) | |
db.session.commit() | |
document.indexing_status = "parsing" | |
document.processing_started_at = datetime.datetime.utcnow() | |
documents.append(document) | |
db.session.add(document) | |
db.session.commit() | |
try: | |
indexing_runner = IndexingRunner() | |
indexing_runner.run(documents) | |
end_at = time.perf_counter() | |
logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green")) | |
except DocumentIsPausedError as ex: | |
logging.info(click.style(str(ex), fg="yellow")) | |
except Exception: | |
pass | |