Spaces:
Build error
Build error
from abc import ABC, abstractmethod | |
from enum import Enum | |
from typing import Optional | |
from pydantic import BaseModel | |
from core.extension.extensible import Extensible, ExtensionModule | |
class ModerationAction(Enum): | |
DIRECT_OUTPUT = "direct_output" | |
OVERRIDDEN = "overridden" | |
class ModerationInputsResult(BaseModel): | |
flagged: bool = False | |
action: ModerationAction | |
preset_response: str = "" | |
inputs: dict = {} | |
query: str = "" | |
class ModerationOutputsResult(BaseModel): | |
flagged: bool = False | |
action: ModerationAction | |
preset_response: str = "" | |
text: str = "" | |
class Moderation(Extensible, ABC): | |
""" | |
The base class of moderation. | |
""" | |
module: ExtensionModule = ExtensionModule.MODERATION | |
def __init__(self, app_id: str, tenant_id: str, config: Optional[dict] = None) -> None: | |
super().__init__(tenant_id, config) | |
self.app_id = app_id | |
def validate_config(cls, tenant_id: str, config: dict) -> None: | |
""" | |
Validate the incoming form config data. | |
:param tenant_id: the id of workspace | |
:param config: the form config data | |
:return: | |
""" | |
raise NotImplementedError | |
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult: | |
""" | |
Moderation for inputs. | |
After the user inputs, this method will be called to perform sensitive content review | |
on the user inputs and return the processed results. | |
:param inputs: user inputs | |
:param query: query string (required in chat app) | |
:return: | |
""" | |
raise NotImplementedError | |
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult: | |
""" | |
Moderation for outputs. | |
When LLM outputs content, the front end will pass the output content (may be segmented) | |
to this method for sensitive content review, and the output content will be shielded if the review fails. | |
:param text: LLM output content | |
:return: | |
""" | |
raise NotImplementedError | |
def _validate_inputs_and_outputs_config(cls, config: dict, is_preset_response_required: bool) -> None: | |
# inputs_config | |
inputs_config = config.get("inputs_config") | |
if not isinstance(inputs_config, dict): | |
raise ValueError("inputs_config must be a dict") | |
# outputs_config | |
outputs_config = config.get("outputs_config") | |
if not isinstance(outputs_config, dict): | |
raise ValueError("outputs_config must be a dict") | |
inputs_config_enabled = inputs_config.get("enabled") | |
outputs_config_enabled = outputs_config.get("enabled") | |
if not inputs_config_enabled and not outputs_config_enabled: | |
raise ValueError("At least one of inputs_config or outputs_config must be enabled") | |
# preset_response | |
if not is_preset_response_required: | |
return | |
if inputs_config_enabled: | |
if not inputs_config.get("preset_response"): | |
raise ValueError("inputs_config.preset_response is required") | |
if len(inputs_config.get("preset_response")) > 100: | |
raise ValueError("inputs_config.preset_response must be less than 100 characters") | |
if outputs_config_enabled: | |
if not outputs_config.get("preset_response"): | |
raise ValueError("outputs_config.preset_response is required") | |
if len(outputs_config.get("preset_response")) > 100: | |
raise ValueError("outputs_config.preset_response must be less than 100 characters") | |
class ModerationError(Exception): | |
pass | |