Workflow-Engine / api /services /message_service.py
Severian's picture
initial commit
a8b3f00
import json
from typing import Optional, Union
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.llm_generator.llm_generator import LLMGenerator
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.ops.entities.trace_entity import TraceTaskName
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
from core.ops.utils import measure_time
from extensions.ext_database import db
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from models.account import Account
from models.model import App, AppMode, AppModelConfig, EndUser, Message, MessageFeedback
from services.conversation_service import ConversationService
from services.errors.conversation import ConversationCompletedError, ConversationNotExistsError
from services.errors.message import (
FirstMessageNotExistsError,
LastMessageNotExistsError,
MessageNotExistsError,
SuggestedQuestionsAfterAnswerDisabledError,
)
from services.workflow_service import WorkflowService
class MessageService:
@classmethod
def pagination_by_first_id(
cls,
app_model: App,
user: Optional[Union[Account, EndUser]],
conversation_id: str,
first_id: Optional[str],
limit: int,
order: str = "asc",
) -> InfiniteScrollPagination:
if not user:
return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
if not conversation_id:
return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
conversation = ConversationService.get_conversation(
app_model=app_model, user=user, conversation_id=conversation_id
)
if first_id:
first_message = (
db.session.query(Message)
.filter(Message.conversation_id == conversation.id, Message.id == first_id)
.first()
)
if not first_message:
raise FirstMessageNotExistsError()
history_messages = (
db.session.query(Message)
.filter(
Message.conversation_id == conversation.id,
Message.created_at < first_message.created_at,
Message.id != first_message.id,
)
.order_by(Message.created_at.desc())
.limit(limit)
.all()
)
else:
history_messages = (
db.session.query(Message)
.filter(Message.conversation_id == conversation.id)
.order_by(Message.created_at.desc())
.limit(limit)
.all()
)
has_more = False
if len(history_messages) == limit:
current_page_first_message = history_messages[-1]
rest_count = (
db.session.query(Message)
.filter(
Message.conversation_id == conversation.id,
Message.created_at < current_page_first_message.created_at,
Message.id != current_page_first_message.id,
)
.count()
)
if rest_count > 0:
has_more = True
if order == "asc":
history_messages = list(reversed(history_messages))
return InfiniteScrollPagination(data=history_messages, limit=limit, has_more=has_more)
@classmethod
def pagination_by_last_id(
cls,
app_model: App,
user: Optional[Union[Account, EndUser]],
last_id: Optional[str],
limit: int,
conversation_id: Optional[str] = None,
include_ids: Optional[list] = None,
) -> InfiniteScrollPagination:
if not user:
return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
base_query = db.session.query(Message)
if conversation_id is not None:
conversation = ConversationService.get_conversation(
app_model=app_model, user=user, conversation_id=conversation_id
)
base_query = base_query.filter(Message.conversation_id == conversation.id)
if include_ids is not None:
base_query = base_query.filter(Message.id.in_(include_ids))
if last_id:
last_message = base_query.filter(Message.id == last_id).first()
if not last_message:
raise LastMessageNotExistsError()
history_messages = (
base_query.filter(Message.created_at < last_message.created_at, Message.id != last_message.id)
.order_by(Message.created_at.desc())
.limit(limit)
.all()
)
else:
history_messages = base_query.order_by(Message.created_at.desc()).limit(limit).all()
has_more = False
if len(history_messages) == limit:
current_page_first_message = history_messages[-1]
rest_count = base_query.filter(
Message.created_at < current_page_first_message.created_at, Message.id != current_page_first_message.id
).count()
if rest_count > 0:
has_more = True
return InfiniteScrollPagination(data=history_messages, limit=limit, has_more=has_more)
@classmethod
def create_feedback(
cls, app_model: App, message_id: str, user: Optional[Union[Account, EndUser]], rating: Optional[str]
) -> MessageFeedback:
if not user:
raise ValueError("user cannot be None")
message = cls.get_message(app_model=app_model, user=user, message_id=message_id)
feedback = message.user_feedback if isinstance(user, EndUser) else message.admin_feedback
if not rating and feedback:
db.session.delete(feedback)
elif rating and feedback:
feedback.rating = rating
elif not rating and not feedback:
raise ValueError("rating cannot be None when feedback not exists")
else:
feedback = MessageFeedback(
app_id=app_model.id,
conversation_id=message.conversation_id,
message_id=message.id,
rating=rating,
from_source=("user" if isinstance(user, EndUser) else "admin"),
from_end_user_id=(user.id if isinstance(user, EndUser) else None),
from_account_id=(user.id if isinstance(user, Account) else None),
)
db.session.add(feedback)
db.session.commit()
return feedback
@classmethod
def get_message(cls, app_model: App, user: Optional[Union[Account, EndUser]], message_id: str):
message = (
db.session.query(Message)
.filter(
Message.id == message_id,
Message.app_id == app_model.id,
Message.from_source == ("api" if isinstance(user, EndUser) else "console"),
Message.from_end_user_id == (user.id if isinstance(user, EndUser) else None),
Message.from_account_id == (user.id if isinstance(user, Account) else None),
)
.first()
)
if not message:
raise MessageNotExistsError()
return message
@classmethod
def get_suggested_questions_after_answer(
cls, app_model: App, user: Optional[Union[Account, EndUser]], message_id: str, invoke_from: InvokeFrom
) -> list[Message]:
if not user:
raise ValueError("user cannot be None")
message = cls.get_message(app_model=app_model, user=user, message_id=message_id)
conversation = ConversationService.get_conversation(
app_model=app_model, conversation_id=message.conversation_id, user=user
)
if not conversation:
raise ConversationNotExistsError()
if conversation.status != "normal":
raise ConversationCompletedError()
model_manager = ModelManager()
if app_model.mode == AppMode.ADVANCED_CHAT.value:
workflow_service = WorkflowService()
if invoke_from == InvokeFrom.DEBUGGER:
workflow = workflow_service.get_draft_workflow(app_model=app_model)
else:
workflow = workflow_service.get_published_workflow(app_model=app_model)
if workflow is None:
return []
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
if not app_config.additional_features.suggested_questions_after_answer:
raise SuggestedQuestionsAfterAnswerDisabledError()
model_instance = model_manager.get_default_model_instance(
tenant_id=app_model.tenant_id, model_type=ModelType.LLM
)
else:
if not conversation.override_model_configs:
app_model_config = (
db.session.query(AppModelConfig)
.filter(
AppModelConfig.id == conversation.app_model_config_id, AppModelConfig.app_id == app_model.id
)
.first()
)
else:
conversation_override_model_configs = json.loads(conversation.override_model_configs)
app_model_config = AppModelConfig(
id=conversation.app_model_config_id,
app_id=app_model.id,
)
app_model_config = app_model_config.from_model_config_dict(conversation_override_model_configs)
suggested_questions_after_answer = app_model_config.suggested_questions_after_answer_dict
if suggested_questions_after_answer.get("enabled", False) is False:
raise SuggestedQuestionsAfterAnswerDisabledError()
model_instance = model_manager.get_model_instance(
tenant_id=app_model.tenant_id,
provider=app_model_config.model_dict["provider"],
model_type=ModelType.LLM,
model=app_model_config.model_dict["name"],
)
# get memory of conversation (read-only)
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
histories = memory.get_history_prompt_text(
max_token_limit=3000,
message_limit=3,
)
with measure_time() as timer:
questions = LLMGenerator.generate_suggested_questions_after_answer(
tenant_id=app_model.tenant_id, histories=histories
)
# get tracing instance
trace_manager = TraceQueueManager(app_id=app_model.id)
trace_manager.add_trace_task(
TraceTask(
TraceTaskName.SUGGESTED_QUESTION_TRACE, message_id=message_id, suggested_question=questions, timer=timer
)
)
return questions