Spaces:
Build error
Build error
import json | |
from typing import Optional | |
from core.app.app_config.entities import ( | |
DatasetEntity, | |
DatasetRetrieveConfigEntity, | |
EasyUIBasedAppConfig, | |
ExternalDataVariableEntity, | |
ModelConfigEntity, | |
PromptTemplateEntity, | |
VariableEntity, | |
) | |
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManager | |
from core.app.apps.chat.app_config_manager import ChatAppConfigManager | |
from core.app.apps.completion.app_config_manager import CompletionAppConfigManager | |
from core.file.models import FileExtraConfig | |
from core.helper import encrypter | |
from core.model_runtime.entities.llm_entities import LLMMode | |
from core.model_runtime.utils.encoders import jsonable_encoder | |
from core.prompt.simple_prompt_transform import SimplePromptTransform | |
from core.workflow.nodes import NodeType | |
from events.app_event import app_was_created | |
from extensions.ext_database import db | |
from models.account import Account | |
from models.api_based_extension import APIBasedExtension, APIBasedExtensionPoint | |
from models.model import App, AppMode, AppModelConfig | |
from models.workflow import Workflow, WorkflowType | |
class WorkflowConverter: | |
""" | |
App Convert to Workflow Mode | |
""" | |
def convert_to_workflow( | |
self, app_model: App, account: Account, name: str, icon_type: str, icon: str, icon_background: str | |
): | |
""" | |
Convert app to workflow | |
- basic mode of chatbot app | |
- expert mode of chatbot app | |
- completion app | |
:param app_model: App instance | |
:param account: Account | |
:param name: new app name | |
:param icon: new app icon | |
:param icon_type: new app icon type | |
:param icon_background: new app icon background | |
:return: new App instance | |
""" | |
# convert app model config | |
if not app_model.app_model_config: | |
raise ValueError("App model config is required") | |
workflow = self.convert_app_model_config_to_workflow( | |
app_model=app_model, app_model_config=app_model.app_model_config, account_id=account.id | |
) | |
# create new app | |
new_app = App() | |
new_app.tenant_id = app_model.tenant_id | |
new_app.name = name or app_model.name + "(workflow)" | |
new_app.mode = AppMode.ADVANCED_CHAT.value if app_model.mode == AppMode.CHAT.value else AppMode.WORKFLOW.value | |
new_app.icon_type = icon_type or app_model.icon_type | |
new_app.icon = icon or app_model.icon | |
new_app.icon_background = icon_background or app_model.icon_background | |
new_app.enable_site = app_model.enable_site | |
new_app.enable_api = app_model.enable_api | |
new_app.api_rpm = app_model.api_rpm | |
new_app.api_rph = app_model.api_rph | |
new_app.is_demo = False | |
new_app.is_public = app_model.is_public | |
new_app.created_by = account.id | |
new_app.updated_by = account.id | |
db.session.add(new_app) | |
db.session.flush() | |
db.session.commit() | |
workflow.app_id = new_app.id | |
db.session.commit() | |
app_was_created.send(new_app, account=account) | |
return new_app | |
def convert_app_model_config_to_workflow(self, app_model: App, app_model_config: AppModelConfig, account_id: str): | |
""" | |
Convert app model config to workflow mode | |
:param app_model: App instance | |
:param app_model_config: AppModelConfig instance | |
:param account_id: Account ID | |
""" | |
# get new app mode | |
new_app_mode = self._get_new_app_mode(app_model) | |
# convert app model config | |
app_config = self._convert_to_app_config(app_model=app_model, app_model_config=app_model_config) | |
# init workflow graph | |
graph = {"nodes": [], "edges": []} | |
# Convert list: | |
# - variables -> start | |
# - model_config -> llm | |
# - prompt_template -> llm | |
# - file_upload -> llm | |
# - external_data_variables -> http-request | |
# - dataset -> knowledge-retrieval | |
# - show_retrieve_source -> knowledge-retrieval | |
# convert to start node | |
start_node = self._convert_to_start_node(variables=app_config.variables) | |
graph["nodes"].append(start_node) | |
# convert to http request node | |
external_data_variable_node_mapping = {} | |
if app_config.external_data_variables: | |
http_request_nodes, external_data_variable_node_mapping = self._convert_to_http_request_node( | |
app_model=app_model, | |
variables=app_config.variables, | |
external_data_variables=app_config.external_data_variables, | |
) | |
for http_request_node in http_request_nodes: | |
graph = self._append_node(graph, http_request_node) | |
# convert to knowledge retrieval node | |
if app_config.dataset: | |
knowledge_retrieval_node = self._convert_to_knowledge_retrieval_node( | |
new_app_mode=new_app_mode, dataset_config=app_config.dataset, model_config=app_config.model | |
) | |
if knowledge_retrieval_node: | |
graph = self._append_node(graph, knowledge_retrieval_node) | |
# convert to llm node | |
llm_node = self._convert_to_llm_node( | |
original_app_mode=AppMode.value_of(app_model.mode), | |
new_app_mode=new_app_mode, | |
graph=graph, | |
model_config=app_config.model, | |
prompt_template=app_config.prompt_template, | |
file_upload=app_config.additional_features.file_upload, | |
external_data_variable_node_mapping=external_data_variable_node_mapping, | |
) | |
graph = self._append_node(graph, llm_node) | |
if new_app_mode == AppMode.WORKFLOW: | |
# convert to end node by app mode | |
end_node = self._convert_to_end_node() | |
graph = self._append_node(graph, end_node) | |
else: | |
answer_node = self._convert_to_answer_node() | |
graph = self._append_node(graph, answer_node) | |
app_model_config_dict = app_config.app_model_config_dict | |
# features | |
if new_app_mode == AppMode.ADVANCED_CHAT: | |
features = { | |
"opening_statement": app_model_config_dict.get("opening_statement"), | |
"suggested_questions": app_model_config_dict.get("suggested_questions"), | |
"suggested_questions_after_answer": app_model_config_dict.get("suggested_questions_after_answer"), | |
"speech_to_text": app_model_config_dict.get("speech_to_text"), | |
"text_to_speech": app_model_config_dict.get("text_to_speech"), | |
"file_upload": app_model_config_dict.get("file_upload"), | |
"sensitive_word_avoidance": app_model_config_dict.get("sensitive_word_avoidance"), | |
"retriever_resource": app_model_config_dict.get("retriever_resource"), | |
} | |
else: | |
features = { | |
"text_to_speech": app_model_config_dict.get("text_to_speech"), | |
"file_upload": app_model_config_dict.get("file_upload"), | |
"sensitive_word_avoidance": app_model_config_dict.get("sensitive_word_avoidance"), | |
} | |
# create workflow record | |
workflow = Workflow( | |
tenant_id=app_model.tenant_id, | |
app_id=app_model.id, | |
type=WorkflowType.from_app_mode(new_app_mode).value, | |
version="draft", | |
graph=json.dumps(graph), | |
features=json.dumps(features), | |
created_by=account_id, | |
environment_variables=[], | |
conversation_variables=[], | |
) | |
db.session.add(workflow) | |
db.session.commit() | |
return workflow | |
def _convert_to_app_config(self, app_model: App, app_model_config: AppModelConfig) -> EasyUIBasedAppConfig: | |
app_mode = AppMode.value_of(app_model.mode) | |
if app_mode == AppMode.AGENT_CHAT or app_model.is_agent: | |
app_model.mode = AppMode.AGENT_CHAT.value | |
app_config = AgentChatAppConfigManager.get_app_config( | |
app_model=app_model, app_model_config=app_model_config | |
) | |
elif app_mode == AppMode.CHAT: | |
app_config = ChatAppConfigManager.get_app_config(app_model=app_model, app_model_config=app_model_config) | |
elif app_mode == AppMode.COMPLETION: | |
app_config = CompletionAppConfigManager.get_app_config( | |
app_model=app_model, app_model_config=app_model_config | |
) | |
else: | |
raise ValueError("Invalid app mode") | |
return app_config | |
def _convert_to_start_node(self, variables: list[VariableEntity]) -> dict: | |
""" | |
Convert to Start Node | |
:param variables: list of variables | |
:return: | |
""" | |
return { | |
"id": "start", | |
"position": None, | |
"data": { | |
"title": "START", | |
"type": NodeType.START.value, | |
"variables": [jsonable_encoder(v) for v in variables], | |
}, | |
} | |
def _convert_to_http_request_node( | |
self, app_model: App, variables: list[VariableEntity], external_data_variables: list[ExternalDataVariableEntity] | |
) -> tuple[list[dict], dict[str, str]]: | |
""" | |
Convert API Based Extension to HTTP Request Node | |
:param app_model: App instance | |
:param variables: list of variables | |
:param external_data_variables: list of external data variables | |
:return: | |
""" | |
index = 1 | |
nodes = [] | |
external_data_variable_node_mapping = {} | |
tenant_id = app_model.tenant_id | |
for external_data_variable in external_data_variables: | |
tool_type = external_data_variable.type | |
if tool_type != "api": | |
continue | |
tool_variable = external_data_variable.variable | |
tool_config = external_data_variable.config | |
# get params from config | |
api_based_extension_id = tool_config.get("api_based_extension_id") | |
if not api_based_extension_id: | |
continue | |
# get api_based_extension | |
api_based_extension = self._get_api_based_extension( | |
tenant_id=tenant_id, api_based_extension_id=api_based_extension_id | |
) | |
# decrypt api_key | |
api_key = encrypter.decrypt_token(tenant_id=tenant_id, token=api_based_extension.api_key) | |
inputs = {} | |
for v in variables: | |
inputs[v.variable] = "{{#start." + v.variable + "#}}" | |
request_body = { | |
"point": APIBasedExtensionPoint.APP_EXTERNAL_DATA_TOOL_QUERY.value, | |
"params": { | |
"app_id": app_model.id, | |
"tool_variable": tool_variable, | |
"inputs": inputs, | |
"query": "{{#sys.query#}}" if app_model.mode == AppMode.CHAT.value else "", | |
}, | |
} | |
request_body_json = json.dumps(request_body) | |
request_body_json = request_body_json.replace(r"\{\{", "{{").replace(r"\}\}", "}}") | |
http_request_node = { | |
"id": f"http_request_{index}", | |
"position": None, | |
"data": { | |
"title": f"HTTP REQUEST {api_based_extension.name}", | |
"type": NodeType.HTTP_REQUEST.value, | |
"method": "post", | |
"url": api_based_extension.api_endpoint, | |
"authorization": {"type": "api-key", "config": {"type": "bearer", "api_key": api_key}}, | |
"headers": "", | |
"params": "", | |
"body": {"type": "json", "data": request_body_json}, | |
}, | |
} | |
nodes.append(http_request_node) | |
# append code node for response body parsing | |
code_node = { | |
"id": f"code_{index}", | |
"position": None, | |
"data": { | |
"title": f"Parse {api_based_extension.name} Response", | |
"type": NodeType.CODE.value, | |
"variables": [{"variable": "response_json", "value_selector": [http_request_node["id"], "body"]}], | |
"code_language": "python3", | |
"code": "import json\n\ndef main(response_json: str) -> str:\n response_body = json.loads(" | |
'response_json)\n return {\n "result": response_body["result"]\n }', | |
"outputs": {"result": {"type": "string"}}, | |
}, | |
} | |
nodes.append(code_node) | |
external_data_variable_node_mapping[external_data_variable.variable] = code_node["id"] | |
index += 1 | |
return nodes, external_data_variable_node_mapping | |
def _convert_to_knowledge_retrieval_node( | |
self, new_app_mode: AppMode, dataset_config: DatasetEntity, model_config: ModelConfigEntity | |
) -> Optional[dict]: | |
""" | |
Convert datasets to Knowledge Retrieval Node | |
:param new_app_mode: new app mode | |
:param dataset_config: dataset | |
:param model_config: model config | |
:return: | |
""" | |
retrieve_config = dataset_config.retrieve_config | |
if new_app_mode == AppMode.ADVANCED_CHAT: | |
query_variable_selector = ["sys", "query"] | |
elif retrieve_config.query_variable: | |
# fetch query variable | |
query_variable_selector = ["start", retrieve_config.query_variable] | |
else: | |
return None | |
return { | |
"id": "knowledge_retrieval", | |
"position": None, | |
"data": { | |
"title": "KNOWLEDGE RETRIEVAL", | |
"type": NodeType.KNOWLEDGE_RETRIEVAL.value, | |
"query_variable_selector": query_variable_selector, | |
"dataset_ids": dataset_config.dataset_ids, | |
"retrieval_mode": retrieve_config.retrieve_strategy.value, | |
"single_retrieval_config": { | |
"model": { | |
"provider": model_config.provider, | |
"name": model_config.model, | |
"mode": model_config.mode, | |
"completion_params": { | |
**model_config.parameters, | |
"stop": model_config.stop, | |
}, | |
} | |
} | |
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE | |
else None, | |
"multiple_retrieval_config": { | |
"top_k": retrieve_config.top_k, | |
"score_threshold": retrieve_config.score_threshold, | |
"reranking_model": retrieve_config.reranking_model, | |
} | |
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE | |
else None, | |
}, | |
} | |
def _convert_to_llm_node( | |
self, | |
original_app_mode: AppMode, | |
new_app_mode: AppMode, | |
graph: dict, | |
model_config: ModelConfigEntity, | |
prompt_template: PromptTemplateEntity, | |
file_upload: Optional[FileExtraConfig] = None, | |
external_data_variable_node_mapping: dict[str, str] | None = None, | |
) -> dict: | |
""" | |
Convert to LLM Node | |
:param original_app_mode: original app mode | |
:param new_app_mode: new app mode | |
:param graph: graph | |
:param model_config: model config | |
:param prompt_template: prompt template | |
:param file_upload: file upload config (optional) | |
:param external_data_variable_node_mapping: external data variable node mapping | |
""" | |
# fetch start and knowledge retrieval node | |
start_node = next(filter(lambda n: n["data"]["type"] == NodeType.START.value, graph["nodes"])) | |
knowledge_retrieval_node = next( | |
filter(lambda n: n["data"]["type"] == NodeType.KNOWLEDGE_RETRIEVAL.value, graph["nodes"]), None | |
) | |
role_prefix = None | |
# Chat Model | |
if model_config.mode == LLMMode.CHAT.value: | |
if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE: | |
if not prompt_template.simple_prompt_template: | |
raise ValueError("Simple prompt template is required") | |
# get prompt template | |
prompt_transform = SimplePromptTransform() | |
prompt_template_config = prompt_transform.get_prompt_template( | |
app_mode=original_app_mode, | |
provider=model_config.provider, | |
model=model_config.model, | |
pre_prompt=prompt_template.simple_prompt_template, | |
has_context=knowledge_retrieval_node is not None, | |
query_in_prompt=False, | |
) | |
template = prompt_template_config["prompt_template"].template | |
if not template: | |
prompts = [] | |
else: | |
template = self._replace_template_variables( | |
template, start_node["data"]["variables"], external_data_variable_node_mapping | |
) | |
prompts = [{"role": "user", "text": template}] | |
else: | |
advanced_chat_prompt_template = prompt_template.advanced_chat_prompt_template | |
prompts = [] | |
if advanced_chat_prompt_template: | |
for m in advanced_chat_prompt_template.messages: | |
text = m.text | |
text = self._replace_template_variables( | |
text, start_node["data"]["variables"], external_data_variable_node_mapping | |
) | |
prompts.append({"role": m.role.value, "text": text}) | |
# Completion Model | |
else: | |
if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE: | |
if not prompt_template.simple_prompt_template: | |
raise ValueError("Simple prompt template is required") | |
# get prompt template | |
prompt_transform = SimplePromptTransform() | |
prompt_template_config = prompt_transform.get_prompt_template( | |
app_mode=original_app_mode, | |
provider=model_config.provider, | |
model=model_config.model, | |
pre_prompt=prompt_template.simple_prompt_template, | |
has_context=knowledge_retrieval_node is not None, | |
query_in_prompt=False, | |
) | |
template = prompt_template_config["prompt_template"].template | |
template = self._replace_template_variables( | |
template=template, | |
variables=start_node["data"]["variables"], | |
external_data_variable_node_mapping=external_data_variable_node_mapping, | |
) | |
prompts = {"text": template} | |
prompt_rules = prompt_template_config["prompt_rules"] | |
role_prefix = { | |
"user": prompt_rules.get("human_prefix", "Human"), | |
"assistant": prompt_rules.get("assistant_prefix", "Assistant"), | |
} | |
else: | |
advanced_completion_prompt_template = prompt_template.advanced_completion_prompt_template | |
if advanced_completion_prompt_template: | |
text = advanced_completion_prompt_template.prompt | |
text = self._replace_template_variables( | |
template=text, | |
variables=start_node["data"]["variables"], | |
external_data_variable_node_mapping=external_data_variable_node_mapping, | |
) | |
else: | |
text = "" | |
text = text.replace("{{#query#}}", "{{#sys.query#}}") | |
prompts = { | |
"text": text, | |
} | |
if advanced_completion_prompt_template and advanced_completion_prompt_template.role_prefix: | |
role_prefix = { | |
"user": advanced_completion_prompt_template.role_prefix.user, | |
"assistant": advanced_completion_prompt_template.role_prefix.assistant, | |
} | |
memory = None | |
if new_app_mode == AppMode.ADVANCED_CHAT: | |
memory = {"role_prefix": role_prefix, "window": {"enabled": False}} | |
completion_params = model_config.parameters | |
completion_params.update({"stop": model_config.stop}) | |
return { | |
"id": "llm", | |
"position": None, | |
"data": { | |
"title": "LLM", | |
"type": NodeType.LLM.value, | |
"model": { | |
"provider": model_config.provider, | |
"name": model_config.model, | |
"mode": model_config.mode, | |
"completion_params": completion_params, | |
}, | |
"prompt_template": prompts, | |
"memory": memory, | |
"context": { | |
"enabled": knowledge_retrieval_node is not None, | |
"variable_selector": ["knowledge_retrieval", "result"] | |
if knowledge_retrieval_node is not None | |
else None, | |
}, | |
"vision": { | |
"enabled": file_upload is not None, | |
"variable_selector": ["sys", "files"] if file_upload is not None else None, | |
"configs": {"detail": file_upload.image_config.detail} | |
if file_upload is not None and file_upload.image_config is not None | |
else None, | |
}, | |
}, | |
} | |
def _replace_template_variables( | |
self, template: str, variables: list[dict], external_data_variable_node_mapping: dict[str, str] | None = None | |
) -> str: | |
""" | |
Replace Template Variables | |
:param template: template | |
:param variables: list of variables | |
:param external_data_variable_node_mapping: external data variable node mapping | |
:return: | |
""" | |
for v in variables: | |
template = template.replace("{{" + v["variable"] + "}}", "{{#start." + v["variable"] + "#}}") | |
if external_data_variable_node_mapping: | |
for variable, code_node_id in external_data_variable_node_mapping.items(): | |
template = template.replace("{{" + variable + "}}", "{{#" + code_node_id + ".result#}}") | |
return template | |
def _convert_to_end_node(self) -> dict: | |
""" | |
Convert to End Node | |
:return: | |
""" | |
# for original completion app | |
return { | |
"id": "end", | |
"position": None, | |
"data": { | |
"title": "END", | |
"type": NodeType.END.value, | |
"outputs": [{"variable": "result", "value_selector": ["llm", "text"]}], | |
}, | |
} | |
def _convert_to_answer_node(self) -> dict: | |
""" | |
Convert to Answer Node | |
:return: | |
""" | |
# for original chat app | |
return { | |
"id": "answer", | |
"position": None, | |
"data": {"title": "ANSWER", "type": NodeType.ANSWER.value, "answer": "{{#llm.text#}}"}, | |
} | |
def _create_edge(self, source: str, target: str) -> dict: | |
""" | |
Create Edge | |
:param source: source node id | |
:param target: target node id | |
:return: | |
""" | |
return {"id": f"{source}-{target}", "source": source, "target": target} | |
def _append_node(self, graph: dict, node: dict) -> dict: | |
""" | |
Append Node to Graph | |
:param graph: Graph, include: nodes, edges | |
:param node: Node to append | |
:return: | |
""" | |
previous_node = graph["nodes"][-1] | |
graph["nodes"].append(node) | |
graph["edges"].append(self._create_edge(previous_node["id"], node["id"])) | |
return graph | |
def _get_new_app_mode(self, app_model: App) -> AppMode: | |
""" | |
Get new app mode | |
:param app_model: App instance | |
:return: AppMode | |
""" | |
if app_model.mode == AppMode.COMPLETION.value: | |
return AppMode.WORKFLOW | |
else: | |
return AppMode.ADVANCED_CHAT | |
def _get_api_based_extension(self, tenant_id: str, api_based_extension_id: str): | |
""" | |
Get API Based Extension | |
:param tenant_id: tenant id | |
:param api_based_extension_id: api based extension id | |
:return: | |
""" | |
api_based_extension = ( | |
db.session.query(APIBasedExtension) | |
.filter(APIBasedExtension.tenant_id == tenant_id, APIBasedExtension.id == api_based_extension_id) | |
.first() | |
) | |
if not api_based_extension: | |
raise ValueError(f"API Based Extension not found, id: {api_based_extension_id}") | |
return api_based_extension | |