import json from collections.abc import Mapping from copy import deepcopy from datetime import datetime, timezone from mimetypes import guess_type from typing import Any, Optional, Union from yarl import URL from core.app.entities.app_invoke_entities import InvokeFrom from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler from core.file import FileType from core.file.models import FileTransferMethod from core.ops.ops_trace_manager import TraceQueueManager from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, ToolInvokeMeta, ToolParameter from core.tools.errors import ( ToolEngineInvokeError, ToolInvokeError, ToolNotFoundError, ToolNotSupportedError, ToolParameterValidationError, ToolProviderCredentialValidationError, ToolProviderNotFoundError, ) from core.tools.tool.tool import Tool from core.tools.tool.workflow_tool import WorkflowTool from core.tools.utils.message_transformer import ToolFileMessageTransformer from extensions.ext_database import db from models.enums import CreatedByRole from models.model import Message, MessageFile class ToolEngine: """ Tool runtime engine take care of the tool executions. """ @staticmethod def agent_invoke( tool: Tool, tool_parameters: Union[str, dict], user_id: str, tenant_id: str, message: Message, invoke_from: InvokeFrom, agent_tool_callback: DifyAgentCallbackHandler, trace_manager: Optional[TraceQueueManager] = None, ) -> tuple[str, list[tuple[MessageFile, bool]], ToolInvokeMeta]: """ Agent invokes the tool with the given arguments. """ # check if arguments is a string if isinstance(tool_parameters, str): # check if this tool has only one parameter parameters = [ parameter for parameter in tool.get_runtime_parameters() or [] if parameter.form == ToolParameter.ToolParameterForm.LLM ] if parameters and len(parameters) == 1: tool_parameters = {parameters[0].name: tool_parameters} else: raise ValueError(f"tool_parameters should be a dict, but got a string: {tool_parameters}") # invoke the tool try: # hit the callback handler agent_tool_callback.on_tool_start(tool_name=tool.identity.name, tool_inputs=tool_parameters) meta, response = ToolEngine._invoke(tool, tool_parameters, user_id) response = ToolFileMessageTransformer.transform_tool_invoke_messages( messages=response, user_id=user_id, tenant_id=tenant_id, conversation_id=message.conversation_id ) # extract binary data from tool invoke message binary_files = ToolEngine._extract_tool_response_binary(response) # create message file message_files = ToolEngine._create_message_files( tool_messages=binary_files, agent_message=message, invoke_from=invoke_from, user_id=user_id ) plain_text = ToolEngine._convert_tool_response_to_str(response) # hit the callback handler agent_tool_callback.on_tool_end( tool_name=tool.identity.name, tool_inputs=tool_parameters, tool_outputs=plain_text, message_id=message.id, trace_manager=trace_manager, ) # transform tool invoke message to get LLM friendly message return plain_text, message_files, meta except ToolProviderCredentialValidationError as e: error_response = "Please check your tool provider credentials" agent_tool_callback.on_tool_error(e) except (ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError) as e: error_response = f"there is not a tool named {tool.identity.name}" agent_tool_callback.on_tool_error(e) except ToolParameterValidationError as e: error_response = f"tool parameters validation error: {e}, please check your tool parameters" agent_tool_callback.on_tool_error(e) except ToolInvokeError as e: error_response = f"tool invoke error: {e}" agent_tool_callback.on_tool_error(e) except ToolEngineInvokeError as e: meta = e.args[0] error_response = f"tool invoke error: {meta.error}" agent_tool_callback.on_tool_error(e) return error_response, [], meta except Exception as e: error_response = f"unknown error: {e}" agent_tool_callback.on_tool_error(e) return error_response, [], ToolInvokeMeta.error_instance(error_response) @staticmethod def workflow_invoke( tool: Tool, tool_parameters: Mapping[str, Any], user_id: str, workflow_tool_callback: DifyWorkflowCallbackHandler, workflow_call_depth: int, thread_pool_id: Optional[str] = None, ) -> list[ToolInvokeMessage]: """ Workflow invokes the tool with the given arguments. """ try: # hit the callback handler assert tool.identity is not None workflow_tool_callback.on_tool_start(tool_name=tool.identity.name, tool_inputs=tool_parameters) if isinstance(tool, WorkflowTool): tool.workflow_call_depth = workflow_call_depth + 1 tool.thread_pool_id = thread_pool_id if tool.runtime and tool.runtime.runtime_parameters: tool_parameters = {**tool.runtime.runtime_parameters, **tool_parameters} response = tool.invoke(user_id=user_id, tool_parameters=tool_parameters) # hit the callback handler workflow_tool_callback.on_tool_end( tool_name=tool.identity.name, tool_inputs=tool_parameters, tool_outputs=response, ) return response except Exception as e: workflow_tool_callback.on_tool_error(e) raise e @staticmethod def _invoke(tool: Tool, tool_parameters: dict, user_id: str) -> tuple[ToolInvokeMeta, list[ToolInvokeMessage]]: """ Invoke the tool with the given arguments. """ started_at = datetime.now(timezone.utc) meta = ToolInvokeMeta( time_cost=0.0, error=None, tool_config={ "tool_name": tool.identity.name, "tool_provider": tool.identity.provider, "tool_provider_type": tool.tool_provider_type().value, "tool_parameters": deepcopy(tool.runtime.runtime_parameters), "tool_icon": tool.identity.icon, }, ) try: response = tool.invoke(user_id, tool_parameters) except Exception as e: meta.error = str(e) raise ToolEngineInvokeError(meta) finally: ended_at = datetime.now(timezone.utc) meta.time_cost = (ended_at - started_at).total_seconds() return meta, response @staticmethod def _convert_tool_response_to_str(tool_response: list[ToolInvokeMessage]) -> str: """ Handle tool response """ result = "" for response in tool_response: if response.type == ToolInvokeMessage.MessageType.TEXT: result += response.message elif response.type == ToolInvokeMessage.MessageType.LINK: result += f"result link: {response.message}. please tell user to check it." elif response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}: result += ( "image has been created and sent to user already, you do not need to create it," " just tell the user to check it now." ) elif response.type == ToolInvokeMessage.MessageType.JSON: result += f"tool response: {json.dumps(response.message, ensure_ascii=False)}." else: result += f"tool response: {response.message}." return result @staticmethod def _extract_tool_response_binary(tool_response: list[ToolInvokeMessage]) -> list[ToolInvokeMessageBinary]: """ Extract tool response binary """ result = [] for response in tool_response: if response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}: mimetype = None if response.meta.get("mime_type"): mimetype = response.meta.get("mime_type") else: try: url = URL(response.message) extension = url.suffix guess_type_result, _ = guess_type(f"a{extension}") if guess_type_result: mimetype = guess_type_result except Exception: pass if not mimetype: mimetype = "image/jpeg" result.append( ToolInvokeMessageBinary( mimetype=response.meta.get("mime_type", "image/jpeg"), url=response.message, save_as=response.save_as, ) ) elif response.type == ToolInvokeMessage.MessageType.BLOB: result.append( ToolInvokeMessageBinary( mimetype=response.meta.get("mime_type", "octet/stream"), url=response.message, save_as=response.save_as, ) ) elif response.type == ToolInvokeMessage.MessageType.LINK: # check if there is a mime type in meta if response.meta and "mime_type" in response.meta: result.append( ToolInvokeMessageBinary( mimetype=response.meta.get("mime_type", "octet/stream") if response.meta else "octet/stream", url=response.message, save_as=response.save_as, ) ) return result @staticmethod def _create_message_files( tool_messages: list[ToolInvokeMessageBinary], agent_message: Message, invoke_from: InvokeFrom, user_id: str, ) -> list[tuple[Any, str]]: """ Create message file :param messages: messages :return: message files, should save as variable """ result = [] for message in tool_messages: if "image" in message.mimetype: file_type = FileType.IMAGE elif "video" in message.mimetype: file_type = FileType.VIDEO elif "audio" in message.mimetype: file_type = FileType.AUDIO elif "text" in message.mimetype or "pdf" in message.mimetype: file_type = FileType.DOCUMENT else: file_type = FileType.CUSTOM # extract tool file id from url tool_file_id = message.url.split("/")[-1].split(".")[0] message_file = MessageFile( message_id=agent_message.id, type=file_type, transfer_method=FileTransferMethod.TOOL_FILE, belongs_to="assistant", url=message.url, upload_file_id=tool_file_id, created_by_role=( CreatedByRole.ACCOUNT if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else CreatedByRole.END_USER ), created_by=user_id, ) db.session.add(message_file) db.session.commit() db.session.refresh(message_file) result.append((message_file.id, message.save_as)) db.session.close() return result