Spaces:
Running
Running
File size: 24,258 Bytes
044b38d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
import gradio as gr
import random
import time
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
import os
import json
import openai
import random
import asyncio
from langchain.prompts import (
ChatPromptTemplate,
HumanMessagePromptTemplate
)
from ast import literal_eval
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
HumanMessage,
)
import json
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.chat_models import ChatAnthropic
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
from typing import List
import json
from ast import literal_eval
import os
import openai
import random
import time
import copy
import asyncio
from prompts import system_structure_template, system_epics_template, story_cards_template, schema_template, entities_template, update_schema_template, check_message_template, update_story_cards_template
os.environ['OPENAI_API_KEY'] = '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'
openai.api_key = "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"
llm=ChatOpenAI(
temperature=.7,
model='gpt-4',
)
# SYSTEM ACTORS
class SystemActor(BaseModel):
actor: str = Field(description="name of the system actor")
desc: str = Field(description="role description of the system actor")
class SystemActors(BaseModel):
actors: List[SystemActor]
parser_actors = PydanticOutputParser(pydantic_object=SystemActors)
# ACTOR EPICS
class SystemEPIC(BaseModel):
epic: str = Field(description="system epic for the given actor")
features: List
class SystemEPICs(BaseModel):
epics: List[SystemEPIC]
parser_epics = PydanticOutputParser(pydantic_object=SystemEPICs)
class Entities(BaseModel):
entities: List[str] = Field(description="the entity name.")
entities_schema = PydanticOutputParser(pydantic_object=Entities)
class Attrib(BaseModel):
system_attrib_id: str = Field(description="the id of the system data model followed by the this property id (e.g., 54-3)")
system_attrib_name: str = Field(description="this property name.")
system_attrib_datatype: str = Field(description="this property datatype. It must only be among these values: text, number, date)")
class DataModel(BaseModel):
data_model_id: int = Field(description="an id of the corresponding data model (patient, room, booking, etc.)")
data_model_name: str = Field(description="the name of the system data model")
user_story_card_ids: List[int] = Field(description="a list of related user story card ids. Should be an empty list.")
data_model_attribs: List[Attrib]
parser_schema = PydanticOutputParser(pydantic_object=DataModel)
class Attrib(BaseModel):
system_attrib_id: str = Field(description="the id of the system data model followed by the this property id (e.g., 54-3)")
system_attrib_name: str = Field(description="this property name.")
system_attrib_datatype: str = Field(description="this property datatype. It must only be among these values: text, number, date.")
class DataModel(BaseModel):
data_model_id: int = Field(description="an id of the corresponding data model (patient, room, booking, etc.)")
data_model_name: str = Field(description="the name of the system data model")
user_story_card_ids: List[int] = Field(description="a list of related user story card ids. Should be an empty list.")
data_model_attribs: List[Attrib]
parser_schema = PydanticOutputParser(pydantic_object=DataModel)
class Message(BaseModel):
action_id: str = Field(description="Action unique ID")
action_case: str = Field(description="Explaination of the action case")
action_text: str = Field(description="The text body of the message to the user")
action_type: str = Field(description="Has to be one of the following: Email Message, SMS message, Alerting text") # Feature ID in data shema
class FlowStep(BaseModel):
step: int = Field(description="step number")
actor: str = Field(description="The actor performing the action e.g., User, System")
action: str = Field(description="The action description to be performed")
class DataField(BaseModel):
field_id: int = Field(description="the field id")
field_name: str = Field(description="the name of the field")
field_type: str = Field(description="the type of the field only from the following: text, number, date")
required: bool = Field(description="whether field is required or not")
default_value: str = Field(description="the default value of the field")
# STORY CARD
class StoryCard(BaseModel):
user_story_id: str = Field(description="Unique User Story ID") # Feature ID in data shema
user_story: str = Field(description="story title in the format of <as a user, I would be able to ..>")
affected_components: List[str] = Field(description="a list of affected components in the system by this features")
acceptance_criteria: List[str] = Field(description="a list of acceptance criteria")
preconditions: List[str] = Field(description="a list of preconditions with the corresponding acceptance criteria (if any)")
main_flow: List[FlowStep] = Field(description="Main Flow details the actions taken by the user and the system in a step-by-step manner. Make sure you differentiate the user and system steps.")
alternative_flow: List[FlowStep] = Field(description="Alternative Flow that covers the scenarios in which the main flow might fail the actions taken by the user and the system in a step-by-step manner. Make sure you differentiate the user and system steps.")
data_sections: List[DataField] = Field(description="A list contains Field Name, Field type, Required or not required or filed by the system and you can’t edit it, Default value, Note explains the filed input data type. You must use the provided schema to generate data section.")
messages: List[Message] = Field(description="A mandatory field that contains a list of system messages (both succesful and unsuccesfull flows) that result from the main flow.")
related_data_shema_ids: List[int] = Field(description="A list of IDs contains relevant Schema Entity IDs for each entity used in the story card, Only show the Entity IDs. Rely on the privded system schema only.")
parser_cards = PydanticOutputParser(pydantic_object=StoryCard)
def str_to_json(text):
updated_schemas = []
try:
print("GGGGGGGGGGGGG")
updated_schemas.append(parser_schema.parse(text).dict())
updated_schemas = check_schema(updated_schemas)
print("GGGGGGGGGGGGG")
except:
if '```' in text:
resp = text.split('```')[1] # Assume only one json object in the response
resp = resp.replace('json', ' ').strip() # Remove the word json that comes after ```
if resp[0] == '[' and resp[-1] == ']': # If it has brackets, i.e. multiple instances
for obj in literal_eval(resp): # For each instance
updated_schemas.append(eval(str(obj))) # Add schema to updated schemas
else: # If it does not have brackets, i.e. multiple instances
obj = literal_eval(resp)
updated_schemas.append(eval(str(obj))) # Add schema to updated schemas
updated_schemas = check_schema(updated_schemas)
else:
print('unable to parse...')
return updated_schemas
def update_data_schema(schemas, card, file_path):
for s in schemas:
print(f'processing {s["name"]}')
if s['schema']['data_model_id'] in card['related_data_shema_ids']:
if card['user_story_id'] not in s['schema']['user_story_card_ids']:
print(f"adding id to {s['name']}")
s['schema']['user_story_card_ids'].append(card['user_story_id'])
with open(file_path, 'w') as json_file:
json.dump(schemas, json_file)
def ensure_max_three_actors(actors_list):
print("hi inside three actor")
return actors_list[:3]
def ensure_max_three_entities(data):
if 'entities' in data:
data['entities'] = data['entities'][:3]
return data
def updating_cards(card, card_path, list_cards_path, list_of_cards=None):
if card is None:
print("card is non case")
with open(list_cards_path, 'w') as json_file:
json.dump(list_of_cards, json_file)
else:
print(card, card_path, list_cards_path, list_of_cards)
with open(card_path, 'w') as json_file:
json.dump(card, json_file)
if os.path.exists(list_cards_path):
with open(list_cards_path, 'r') as json_file:
list_cards = json.load(json_file)
list_cards.append(card)
with open(list_cards_path, 'w') as json_file:
json.dump(list_cards, json_file)
else:
with open(list_cards_path, 'w') as json_file:
json.dump([card], json_file)
def check_schema(updated_schemas):
if type(updated_schemas)==dict:
u_shem = {}
if 'name' not in updated_schemas.keys():
u_shem['name'] = updated_schemas['data_model_name']
u_shem['schema'] = copy.deepcopy(updated_schemas)
return u_shem
elif type(updated_schemas)==list:
u_shem = []
for updated_schema in updated_schemas:
temp_shem = {}
if 'name' not in updated_schema.keys():
temp_shem['name'] = updated_schema['data_model_name']
temp_shem['schema'] = copy.deepcopy(updated_schema)
u_shem.append(temp_shem)
else:
u_shem.append(updated_schema)
return u_shem
return updated_schemas
def logs(log,filePath):
if os.path.exists(filePath):
with open(filePath, 'r') as json_file:
logs = json.load(json_file)
logs.append(log)
with open(filePath, 'w') as json_file:
json.dump(logs, json_file)
else:
with open(filePath, 'w') as json_file:
json.dump([log], json_file)
def delete(json_file):
if os.path.exists(json_file):
os.remove(json_file)
print(f"The file {json_file} has been deleted.")
else:
print("The file does not exist.")
def check_None(the_list):
while None in the_list:
the_list.remove(None)
return the_list
def delete(json_file):
if os.path.exists(json_file):
os.remove(json_file)
print(f"The file {json_file} has been deleted.")
else:
print("The file does not exist.")
def is_all_english_alpha_numeric_or_space(text):
allowed_chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 \".,:'!?+="
return all(char in allowed_chars for char in text)
def Validating_Input(text):
"""
Check if the text contains "GPT" as a prefix in any substring, regardless of case.
Also, checks for the presence of "OpenAI" or "Open AI".
Parameters:
- text (str): The text to search within.
Returns:
- bool: True if the "GPT" or "OpenAI" conditions are met, False otherwise.
"""
text_lower = text.lower()
print("HI FROM VALIDATING INPUT =========")
# Check if "GPT" is a prefix in any substring
if "gpt" in text_lower:
return True
# Check for the "OpenAI" condition
if "openai" in text_lower or "open ai" in text_lower:
return True
if "llm" in text_lower or "llms" in text_lower:
return True
print("HI FROM VALIDATING INPUT RETURNNING FALSE =========")
return False
def check_message(user_message):
llm=ChatOpenAI(
temperature=.7,
model='gpt-4',
)
prompt = check_message_template.format_prompt(
message=user_message,
)
response = llm(prompt.to_messages())
return response.content.lower()
def apologise(step):
if step ==0:
return "Your request is unclear. Please provide additional information or try using different terms.\n\n"
if step ==1:
return "Oops! Your input is a bit ambiguous. Can you please provide more clarity or details?\n\n"
if step ==2:
return "We're not sure what you meant by that. Could you rephrase or be more specific?\n\n"
if step ==3:
return "Sorry, we didn't quite get that. Can you clarify or provide more context?"
def apologise_lang(step):
if step ==0:
return "Apologies, but at this moment, we only support English for 'فزاع'. We appreciate your understanding.\n\n"
if step ==1:
return "Thank you for your interest in 'فزاع'. Currently, we are offering support exclusively in English.\n\n"
if step ==2:
return "Please note that 'فزاع' is presently supported in English only. We're working to expand our language offerings in the future.\n\n"
if step ==3:
return "We value our diverse user base, but as of now, our support for 'فزاع' is limited to English. Thanks for your patience.\n\n"
def first_prompt(system_name):
prompt = system_structure_template.format_prompt(
system_name= system_name,
format_instructions= parser_actors.get_format_instructions()
)
response = llm(prompt.to_messages())
return response
async def aget_epics(actor_obj, system_name):
print(f'processing actor {actor_obj["actor"]}')
prompt = system_epics_template.format_prompt(
system_name= system_name,
format_instructions= parser_epics.get_format_instructions(),
system_actor = actor_obj['actor'],
actor_description = actor_obj['desc']
)
response = await llm.apredict(prompt.to_string())
aepics = parser_epics.parse(response).dict()
aepics['system_name'] = system_name
aepics['system_actor'] = actor_obj['actor']
aepics['actor_description'] = actor_obj['desc']
return aepics
async def second_prompt(response, system_name):
actors = parser_actors.parse(response.content).dict()['actors']
actors=ensure_max_three_actors(actors)
epics = await asyncio.gather(*[aget_epics(actor,system_name) for actor in actors])
with open('epics_gradio.json', 'w') as json_file:
json.dump(epics, json_file)
return epics
def third_prompt(epics):
prompt = entities_template.format_prompt(
system_context = str(epics),
format_instructions= entities_schema.get_format_instructions(),
)
response = llm(prompt.to_messages())
entities = entities_schema.parse(response.content).dict()
entities = ensure_max_three_entities(entities)
with open('entities_gradio.json', 'w') as json_file:
json.dump(entities, json_file)
return entities['entities']
async def fetch_schemas(entity,epics ):
try:
print(f" Generating {entity}")
prompt = schema_template.format_prompt(
system_entity= entity,
system_context = str(epics),
format_instructions= parser_schema.get_format_instructions(),
)
response = await llm.apredict_messages(messages=prompt.to_messages())
schema = parser_schema.parse(response.content).dict()
return check_schema(schema)
except Exception as e:
print(f"Error processing"+str(e))
return None
async def fourth_prompt(entities,epics):
all_schemas = []
all_schemas = await asyncio.gather(*[fetch_schemas(entity,epics) for entity in entities])
# all_schemas = check_None(all_schemas)
for ind,s in enumerate(all_schemas):
s['schema']['data_model_id'] = (ind+1)
with open('schemas_gradio.json', 'w') as json_file:
json.dump(all_schemas, json_file)
logs(all_schemas,'schemas_logs.json')
return all_schemas
def json_to_markdown_table(data):
md_table = "| System Name | System Actor | Actor Description | Epic | Features |\n"
md_table += "|------------|--------------|--------------------|------|----------|\n"
for entry in data:
system_name = entry['system_name']
system_actor = entry['system_actor']
actor_description = entry['actor_description']
for epic in entry['epics']:
epic_name = epic['epic']
features = ', '.join(epic['features'])
md_table += f"| {system_name} | {system_actor} | {actor_description} | {epic_name} | {features} |\n"
return md_table
def markdown(file_name):
with open(file_name, 'r') as json_file:
json_data = json.load(json_file)
return json_to_markdown_table(json_data)
def create_user_story(first = False):
if not first:
return "\n\n\n Please write a short description for a new user story card\n\n\n"
return "\n\n\n Please write a short description for a user story card\n\n\n"
def affected_parts(user_request):
with open('schemas_gradio.json', 'r') as json_file:
schemas = json.load(json_file)
with open('epics_gradio.json', 'r') as json_file:
epics = json.load(json_file)
prompt = update_schema_template.format_prompt(
schema= str(schemas),
system_context = str(epics),
new_usecase = user_request,
format_instructions= parser_schema.get_format_instructions(),
)
response = llm(prompt.to_messages())
updated_schemas = str_to_json(response.content)
unlucky = []
updated_schemas = check_schema(updated_schemas)
for u in updated_schemas:
check_var = True
for s in schemas:
print(s,u)
if s['name'] == u['name']:
s['schema'] = u['schema']
check_var = False
if check_var:
unlucky.append(u)
for u in unlucky:
schemas.append(u)
with open('schemas_updated_part_gradio.json', 'w') as json_file:
json.dump(updated_schemas, json_file)
logs(updated_schemas,"schemas_updated_part_logs.json")
with open('schemas_gradio.json', 'w') as json_file:
json.dump(schemas, json_file)
logs(schemas,'schemas_logs.json')
def generate_story_cards(user_request):
with open('schemas_gradio.json', 'r') as json_file:
schemas = json.load(json_file)
with open('epics_gradio.json', 'r') as json_file:
epics = json.load(json_file)
prompt = story_cards_template.format_prompt(
format_instructions= parser_cards.get_format_instructions(),
schema = str(schemas),
system_epic = str(epics),
epic_feature = user_request # use the same as above
)
response = llm(prompt.to_messages())
card = parser_cards.parse(response.content).dict()
updating_cards(card, 'card_gradio.json', 'cards_gradio.json')
logs(card,'cards_logs.json')
update_data_schema(schemas, card, 'schemas_gradio.json')
logs(schemas,'schemas_logs.json')
return card
def check_affected_story_ids(schemas_affected_part_path = 'schemas_updated_part_gradio.json'):
with open(schemas_affected_part_path, 'r') as json_file:
schemas_affected_part = json.load(json_file)
story_ids = []
for item in schemas_affected_part:
for userStory_id in item['schema']['user_story_card_ids']:
if userStory_id not in story_ids:
story_ids.append(userStory_id)
logs(json.dumps([{'Story_ids': story_ids}]).replace('\"',''),"Story_ids_logs.json")
return story_ids
async def fetch_cards(cards, card, schemas, ix, story_ids):
print(f"Card details {card}")
try:
if card['user_story_id'] not in story_ids:
print(f'skipping ..')
return
prompt = update_story_cards_template.format_prompt(
format_instructions= parser_cards.get_format_instructions(),
schema = str(schemas),
story_card = str(card),
)
response = await llm.apredict_messages(messages=prompt.to_messages())
try:
new_card = parser_cards.parse(response.content).dict()
except Exception as e:
print(e)
new_card = json.loads(response.content)
print(new_card)
# override old card
cards[ix] = new_card
print("Affected User Story: \n\n", new_card)
return new_card
except Exception as e:
print(f"Error processing"+str(e))
return None
async def update_affected_story_cards(story_ids):
with open('schemas_gradio.json', 'r') as json_file:
schemas = json.load(json_file)
with open('cards_gradio.json', 'r') as json_file:
cards = json.load(json_file)
updated_cards = []
updated_cards = await asyncio.gather(*[fetch_cards(cards, card, schemas, ix, story_ids) for ix, card in enumerate(cards)])
updated_cards = check_None(updated_cards)
logs(cards,'affected_Cards_logs.json')
updating_cards(card = None, card_path = None, list_cards_path = 'cards.json', list_of_cards=cards)
return updated_cards
def user_story_to_markdown(story):
markdown = ""
# Title and ID
markdown += f"## User Story {story['user_story_id']}\n\n"
# Table headers and data
markdown += "| Attribute | Information |\n"
markdown += "| --------- | ----------- |\n"
markdown += f"| User Story | {story['user_story']} |\n"
markdown += f"| Affected Components | {', '.join(story['affected_components'])} |\n"
markdown += f"| Acceptance Criteria | {'<br>'.join(story['acceptance_criteria'])} |\n"
markdown += f"| Preconditions | {'<br>'.join(story['preconditions'])} |\n"
main_flow = '<br>'.join([f"{step['step']}. **{step['actor']}** - {step['action']}" for step in story['main_flow']])
markdown += f"| Main Flow | {main_flow} |\n"
alt_flow = '<br>'.join([f"{step['step']}. **{step['actor']}** - {step['action']}" for step in story['alternative_flow']])
markdown += f"| Alternative Flow | {alt_flow} |\n"
data_sections = '<br>'.join([f"**{section['field_name']}** (Type: {section['field_type']}, Required: {'Yes' if section['required'] else 'No'}, Default: {section['default_value']})" for section in story['data_sections']])
markdown += f"| Data Sections | {data_sections} |\n"
messages = '<br>'.join([f"**{msg['action_case']}** - {msg['action_text']} ({msg['action_type']})" for msg in story['messages']])
markdown += f"| Messages | {messages} |\n"
markdown += f"| Related Data Schema IDs | {', '.join(map(str, story['related_data_shema_ids']))} |\n"
return markdown
def choose():
return "\n\n\n\nPlease Choose one of the following options:\n\n 1- Adding user story to your existing system.\n\n 2- Update existing user story.\n\n\n"
for file in os.listdir():
if file.endswith('_gradio.json'):
delete(file)
|