|
import gradio as gr |
|
from all_models import models |
|
from externalmod import gr_Interface_load, save_image, randomize_seed |
|
import asyncio |
|
import os |
|
from threading import RLock |
|
from datetime import datetime |
|
|
|
preSetPrompt = "High fashion studio foto shoot. tall slender 18+ caucasian woman. gorgeous face. high waist sexy bodysuit. photorealistic. f1.4" |
|
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness" |
|
|
|
lock = RLock() |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None |
|
|
|
def get_current_time(): |
|
now = datetime.now() |
|
current_time = now.strftime("%y-%m-%d %H:%M:%S") |
|
return current_time |
|
|
|
def load_fn(models): |
|
global models_load |
|
models_load = {} |
|
for model in models: |
|
if model not in models_load.keys(): |
|
try: |
|
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) |
|
except Exception as error: |
|
print(error) |
|
m = gr.Interface(lambda: None, ['text'], ['image']) |
|
models_load.update({model: m}) |
|
|
|
|
|
load_fn(models) |
|
|
|
num_models = 12 |
|
max_images = 12 |
|
inference_timeout = 400 |
|
default_models = models[:num_models] |
|
MAX_SEED = 2**32-1 |
|
|
|
|
|
def extend_choices(choices): |
|
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA'] |
|
|
|
|
|
def update_imgbox(choices): |
|
choices_plus = extend_choices(choices[:num_models]) |
|
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus] |
|
|
|
|
|
def random_choices(): |
|
import random |
|
random.seed() |
|
return random.choices(models, k=num_models) |
|
|
|
|
|
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout): |
|
kwargs = {} |
|
if height > 0: kwargs["height"] = height |
|
if width > 0: kwargs["width"] = width |
|
if steps > 0: kwargs["num_inference_steps"] = steps |
|
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg |
|
|
|
if seed == -1: |
|
theSeed = randomize_seed() |
|
else: |
|
theSeed = seed |
|
kwargs["seed"] = theSeed |
|
|
|
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) |
|
await asyncio.sleep(0) |
|
try: |
|
result = await asyncio.wait_for(task, timeout=timeout) |
|
except asyncio.TimeoutError as e: |
|
print(e) |
|
print(f"infer: Task timed out: {model_str}") |
|
if not task.done(): task.cancel() |
|
result = None |
|
raise Exception(f"Task timed out: {model_str}") from e |
|
except Exception as e: |
|
print(e) |
|
print(f"infer: exception: {model_str}") |
|
if not task.done(): task.cancel() |
|
result = None |
|
raise Exception() from e |
|
if task.done() and result is not None and not isinstance(result, tuple): |
|
with lock: |
|
png_path = model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png" |
|
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, theSeed) |
|
return image |
|
return None |
|
|
|
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1): |
|
try: |
|
loop = asyncio.new_event_loop() |
|
result = loop.run_until_complete(infer(model_str, prompt, nprompt, |
|
height, width, steps, cfg, seed, inference_timeout)) |
|
except (Exception, asyncio.CancelledError) as e: |
|
print(e) |
|
print(f"gen_fn: Task aborted: {model_str}") |
|
result = None |
|
raise gr.Error(f"Task aborted: {model_str}, Error: {e}") |
|
finally: |
|
loop.close() |
|
return result |
|
|
|
|
|
def add_gallery(image, model_str, gallery): |
|
if gallery is None: gallery = [] |
|
with lock: |
|
if image is not None: gallery.insert(0, (image, model_str)) |
|
return gallery |
|
|
|
JS=""" |
|
<script> |
|
|
|
/* |
|
function simulateButtonPress_() { |
|
const button = document.getElementById('simulate-button'); |
|
if (button) { |
|
button.click(); // Simulate the button press |
|
console.log('Button Pressed!'); |
|
} |
|
} |
|
*/ |
|
|
|
function simulateButtonPress() { |
|
console.log('Button Pressed!'); |
|
} |
|
|
|
// Function to observe image changes |
|
function observeImageChanges() { |
|
// Select all images with the 'image-monitor' class |
|
const images = document.querySelectorAll('.svelte-1pijsyv'); |
|
|
|
// Create a MutationObserver to watch for changes in the image src |
|
const observer = new MutationObserver((mutationsList, observer) => { |
|
mutationsList.forEach(mutation => { |
|
if (mutation.type === 'attributes' && mutation.attributeName === 'src') { |
|
// If the image src changes, simulate button press |
|
console.log('Image changed!'); |
|
simulateButtonPress(); |
|
} |
|
}); |
|
}); |
|
|
|
// Observer options: observe changes to attributes (like src) |
|
const config = { attributes: true }; |
|
|
|
// Start observing each image |
|
images.forEach(image => { |
|
observer.observe(image, config); |
|
}); |
|
} |
|
|
|
// Start observing |
|
|
|
|
|
window.addEventListener('load', () => { |
|
observeImageChanges(); |
|
console.log("Yo"); |
|
}); |
|
|
|
</script> |
|
""" |
|
|
|
CSS=""" |
|
<style> |
|
.image-monitor { |
|
border:1px solid red; |
|
} |
|
|
|
/* |
|
.svelte-1pijsyv{ |
|
border:1px solid green; |
|
} |
|
*/ |
|
|
|
.gallery-container{ |
|
max-height: 512px; |
|
} |
|
|
|
.butt{ |
|
background-color:#2b4764 !important |
|
} |
|
.butt:hover{ |
|
background-color:#3a6c9f !important; |
|
} |
|
|
|
</style> |
|
""" |
|
|
|
|
|
with gr.Blocks(head=CSS + JS) as demo: |
|
with gr.Tab(str(num_models) + ' Models'): |
|
with gr.Column(scale=2): |
|
with gr.Group(): |
|
txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1) |
|
neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1) |
|
with gr.Accordion("Advanced", open=False, visible=True): |
|
with gr.Row(): |
|
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) |
|
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) |
|
with gr.Row(): |
|
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) |
|
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) |
|
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) |
|
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary") |
|
seed_rand.click(randomize_seed, None, [seed], queue=False) |
|
with gr.Row(): |
|
gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"]) |
|
random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1) |
|
|
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
with gr.Row(): |
|
output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"], |
|
interactive=False, width=112, height=112, show_share_button=False, format="png", |
|
visible=True) for m in default_models] |
|
current_models = [gr.Textbox(m, visible=False) for m in default_models] |
|
|
|
with gr.Column(scale=2): |
|
gallery = gr.Gallery(label="Output", show_download_button=True, |
|
interactive=False, show_share_button=False, container=True, format="png", |
|
preview=True, object_fit="cover", columns=2, rows=2) |
|
|
|
for m, o in zip(current_models, output): |
|
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn, |
|
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o], |
|
concurrency_limit=None, queue=False) |
|
o.change(add_gallery, [o, m, gallery], [gallery]) |
|
|
|
with gr.Column(scale=4): |
|
with gr.Accordion('Model selection'): |
|
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True) |
|
model_choice.change(update_imgbox, model_choice, output) |
|
model_choice.change(extend_choices, model_choice, current_models) |
|
random_button.click(random_choices, None, model_choice) |
|
|
|
with gr.Tab('Single model'): |
|
with gr.Column(scale=2): |
|
model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0]) |
|
with gr.Group(): |
|
txt_input2 = gr.Textbox(label='Your prompt:', value = preSetPrompt, lines=3, autofocus=1) |
|
neg_input2 = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1) |
|
with gr.Accordion("Advanced", open=False, visible=True): |
|
with gr.Row(): |
|
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) |
|
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) |
|
with gr.Row(): |
|
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) |
|
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) |
|
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) |
|
seed_rand2 = gr.Button("Randomize Seed", size="sm", variant="secondary") |
|
seed_rand2.click(randomize_seed, None, [seed2], queue=False) |
|
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images') |
|
with gr.Row(): |
|
gen_button2 = gr.Button('Let the machine halucinate', variant='primary', scale=2, elem_classes=["butt"]) |
|
|
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
with gr.Row(): |
|
output2 = [gr.Image(label='', show_download_button=True, |
|
interactive=False, width=112, height=112, visible=True, format="png", |
|
show_share_button=False, show_label=False) for _ in range(max_images)] |
|
|
|
with gr.Column(scale=2): |
|
gallery2 = gr.Gallery(label="Output", show_download_button=True, |
|
interactive=False, show_share_button=True, container=True, format="png", |
|
preview=True, object_fit="cover", columns=2, rows=2) |
|
|
|
for i, o in enumerate(output2): |
|
img_i = gr.Number(i, visible=False) |
|
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False) |
|
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit], |
|
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None, |
|
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2, |
|
height2, width2, steps2, cfg2, seed2], outputs=[o], |
|
concurrency_limit=None, queue=False) |
|
o.change(add_gallery, [o, model_choice2, gallery2], [gallery2]) |
|
|
|
demo.launch(show_api=False, max_threads=400) |
|
|