|
import gradio as gr
|
|
from random import randint
|
|
from all_models import models
|
|
from externalmod import gr_Interface_load
|
|
import asyncio
|
|
import os
|
|
from threading import RLock
|
|
lock = RLock()
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
|
|
|
|
|
|
def load_fn(models):
|
|
global models_load
|
|
models_load = {}
|
|
for model in models:
|
|
if model not in models_load.keys():
|
|
try:
|
|
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
|
except Exception as error:
|
|
print(error)
|
|
m = gr.Interface(lambda: None, ['text'], ['image'])
|
|
models_load.update({model: m})
|
|
|
|
|
|
load_fn(models)
|
|
|
|
|
|
num_models = 6
|
|
max_images = 6
|
|
inference_timeout = 300
|
|
default_models = models[:num_models]
|
|
MAX_SEED = 2**32-1
|
|
|
|
|
|
def extend_choices(choices):
|
|
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
|
|
|
|
|
|
def update_imgbox(choices):
|
|
choices_plus = extend_choices(choices[:num_models])
|
|
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
|
|
|
|
|
|
def random_choices():
|
|
import random
|
|
random.seed()
|
|
return random.choices(models, k=num_models)
|
|
|
|
|
|
|
|
|
|
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
|
|
from pathlib import Path
|
|
kwargs = {}
|
|
if height is not None and height >= 256: kwargs["height"] = height
|
|
if width is not None and width >= 256: kwargs["width"] = width
|
|
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
|
|
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
|
noise = ""
|
|
if seed >= 0: kwargs["seed"] = seed
|
|
else:
|
|
rand = randint(1, 500)
|
|
for i in range(rand):
|
|
noise += " "
|
|
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
|
|
prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
|
|
await asyncio.sleep(0)
|
|
try:
|
|
result = await asyncio.wait_for(task, timeout=timeout)
|
|
except asyncio.TimeoutError as e:
|
|
print(e)
|
|
print(f"Task timed out: {model_str}")
|
|
if not task.done(): task.cancel()
|
|
result = None
|
|
raise Exception(f"Task timed out: {model_str}")
|
|
except Exception as e:
|
|
print(e)
|
|
if not task.done(): task.cancel()
|
|
result = None
|
|
raise Exception(e)
|
|
if task.done() and result is not None and not isinstance(result, tuple):
|
|
with lock:
|
|
png_path = "image.png"
|
|
result.save(png_path)
|
|
image = str(Path(png_path).resolve())
|
|
return image
|
|
return None
|
|
|
|
|
|
def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
|
|
try:
|
|
loop = asyncio.new_event_loop()
|
|
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
|
|
height, width, steps, cfg, seed, inference_timeout))
|
|
except (Exception, asyncio.CancelledError) as e:
|
|
print(e)
|
|
print(f"Task aborted: {model_str}")
|
|
result = None
|
|
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
|
|
finally:
|
|
loop.close()
|
|
return result
|
|
|
|
|
|
def add_gallery(image, model_str, gallery):
|
|
if gallery is None: gallery = []
|
|
with lock:
|
|
if image is not None: gallery.insert(0, (image, model_str))
|
|
return gallery
|
|
|
|
|
|
CSS="""
|
|
.gradio-container { max-width: 1200px; margin: 0 auto; !important; }
|
|
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
|
|
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
|
|
.guide { text-align: center; !important; }
|
|
"""
|
|
|
|
|
|
with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
|
with gr.Tab('The Dream'):
|
|
with gr.Column(scale=2):
|
|
with gr.Group():
|
|
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
|
neg_input = gr.Textbox(label='Negative prompt:', lines=1)
|
|
with gr.Accordion("Advanced", open=False, visible=True):
|
|
with gr.Row():
|
|
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
|
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
|
with gr.Row():
|
|
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
|
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
|
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
|
with gr.Row():
|
|
gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
|
|
random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
|
|
|
|
|
|
gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")
|
|
|
|
with gr.Column(scale=1):
|
|
with gr.Group():
|
|
with gr.Row():
|
|
output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
|
|
interactive=False, min_width=80, show_share_button=False, format="png",
|
|
visible=True) for m in default_models]
|
|
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
|
|
|
with gr.Column(scale=2):
|
|
gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
|
|
interactive=False, show_share_button=True, container=True, format="png",
|
|
preview=True, object_fit="cover", columns=2, rows=2)
|
|
|
|
for m, o in zip(current_models, output):
|
|
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
|
|
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o], concurrency_limit=None, queue=False)
|
|
o.change(add_gallery, [o, m, gallery], [gallery])
|
|
|
|
|
|
with gr.Column(scale=4):
|
|
with gr.Accordion('Model selection'):
|
|
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
|
|
model_choice.change(update_imgbox, model_choice, output)
|
|
model_choice.change(extend_choices, model_choice, current_models)
|
|
random_button.click(random_choices, None, model_choice)
|
|
|
|
with gr.Tab('Single model'):
|
|
with gr.Column(scale=2):
|
|
model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
|
|
with gr.Group():
|
|
txt_input2 = gr.Textbox(label='Your prompt:', lines=4)
|
|
neg_input2 = gr.Textbox(label='Negative prompt:', lines=1)
|
|
with gr.Accordion("Advanced", open=False, visible=True):
|
|
with gr.Row():
|
|
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
|
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
|
with gr.Row():
|
|
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
|
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
|
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
|
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
|
|
with gr.Row():
|
|
gen_button2 = gr.Button('Generate', variant='primary', scale=2)
|
|
|
|
|
|
|
|
with gr.Column(scale=1):
|
|
with gr.Group():
|
|
with gr.Row():
|
|
output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
|
|
interactive=False, min_width=80, visible=True, format="png",
|
|
show_share_button=False, show_label=False) for _ in range(max_images)]
|
|
|
|
with gr.Column(scale=2):
|
|
gallery2 = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
|
|
interactive=False, show_share_button=True, container=True, format="png",
|
|
preview=True, object_fit="cover", columns=2, rows=2)
|
|
|
|
for i, o in enumerate(output2):
|
|
img_i = gr.Number(i, visible=False)
|
|
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False)
|
|
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
|
|
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
|
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
|
|
height2, width2, steps2, cfg2, seed2], outputs=[o], concurrency_limit=None, queue=False)
|
|
o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
|
|
|
|
|
|
gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")
|
|
|
|
demo.queue(default_concurrency_limit=200, max_size=200)
|
|
demo.launch(show_api=False, max_threads=400)
|
|
|
|
|