Harvester / app.py
Uthar's picture
Update app.py
a89724e verified
raw
history blame
11.3 kB
import gradio as gr
from all_models import models
from prompt import thePrompt, howManyModelsToUse
from externalmod import gr_Interface_load, save_image, randomize_seed
import asyncio
import os
from threading import RLock
from datetime import datetime
preSetPrompt = thePrompt
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness"
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
def get_current_time():
now = datetime.now()
current_time = now.strftime("%y-%m-%d %H:%M:%S")
return current_time
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as error:
print(error)
m = gr.Interface(lambda: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = howManyModelsToUse
max_images = howManyModelsToUse
inference_timeout = 400
default_models = models[:num_models]
MAX_SEED = 2**32-1
def extend_choices(choices):
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices[:num_models])
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
def random_choices():
import random
random.seed()
return random.choices(models, k=num_models)
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
kwargs = {}
if height > 0: kwargs["height"] = height
if width > 0: kwargs["width"] = width
if steps > 0: kwargs["num_inference_steps"] = steps
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
if seed == -1:
theSeed = randomize_seed()
else:
theSeed = seed
kwargs["seed"] = theSeed
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except asyncio.TimeoutError as e:
print(e)
print(f"infer: Task timed out: {model_str}")
if not task.done(): task.cancel()
result = None
raise Exception(f"Task timed out: {model_str}") from e
except Exception as e:
print(e)
print(f"infer: exception: {model_str}")
if not task.done(): task.cancel()
result = None
raise Exception() from e
if task.done() and result is not None and not isinstance(result, tuple):
with lock:
png_path = model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png"
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, theSeed)
return image
return None
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_str, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"gen_fn: Task aborted: {model_str}")
result = None
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
finally:
loop.close()
return result
def add_gallery(image, model_str, gallery):
if gallery is None: gallery = []
with lock:
if image is not None: gallery.insert(0, (image, model_str))
return gallery
JS="""
<script>
// Function to monitor image src changes and automatically download the image
function monitorImageSrcChanges() {
// Set of recently downloaded image URLs to avoid re-triggering the download
const downloadedImages = new Set();
// Track the last time a download occurred (in milliseconds)
let lastDownloadTime = Date.now();
// Create a MutationObserver instance
const observer = new MutationObserver((mutationsList, observer) => {
// Loop through all mutations
mutationsList.forEach(mutation => {
// Check if any new image tags were added
if (mutation.type === 'childList') {
mutation.addedNodes.forEach(node => {
if (node.nodeName === 'IMG') {
// New image added, monitor its src and download it
observeImageSrc(node);
}
});
}
// Check if an image src attribute has changed
if (mutation.type === 'attributes' && mutation.attributeName === 'src') {
console.log('Image src changed:', mutation.target.src);
downloadImage(mutation.target.src);
}
});
});
// Options for the observer (what to monitor)
const config = { childList: true, attributes: true, subtree: true, attributeFilter: ['src'] };
// Start observing the document body (or any specific element)
observer.observe(document.body, config);
// Initial monitoring of images already in the DOM
document.querySelectorAll('img').forEach(img => {
observeImageSrc(img);
});
// Function to observe an image's src attribute changes
function observeImageSrc(img) {
const srcObserver = new MutationObserver(mutations => {
mutations.forEach(mutation => {
if (mutation.type === 'attributes' && mutation.attributeName === 'src') {
console.log('Image src changed:', img.src);
downloadImage(img.src);
}
});
});
// Start observing src attribute changes of the image
srcObserver.observe(img, { attributes: true, attributeFilter: ['src'] });
}
// Function to download an image automatically with a cooldown to prevent multiple downloads
function downloadImage(src) {
// Check if the image has been downloaded recently
if (downloadedImages.has(src)) {
return; // Prevent duplicate downloads
}
// Add the image src to the set of downloaded images
downloadedImages.add(src);
// Trigger the download
const link = document.createElement('a');
link.href = src;
link.download = src.split('/').pop(); // Use the file name from the URL (last part of the src)
link.style.display = 'none'; // Hide the link
document.body.appendChild(link);
link.click(); // Trigger the download
document.body.removeChild(link); // Clean up the DOM by removing the link after download
// Set a cooldown to allow the download to be triggered again after a delay (e.g., 500ms)
setTimeout(() => {
downloadedImages.delete(src); // Remove from the set after the cooldown
}, 500); // 500ms cooldown (adjust as needed)
// After download is triggered, click the button with id "TheButt"
setTimeout(() => {
const button = document.getElementById('TheButt');
if (button) {
button.click(); // Click the button
} else {
console.error('Button with id "TheButt" not found!');
}
}, 500); // Adjust the timeout if needed to make sure the download starts before clicking
// Update the last download time
lastDownloadTime = Date.now();
}
// Function to check for inactivity and reload the page if no download happened in 400 seconds
setInterval(() => {
const currentTime = Date.now();
if (currentTime - lastDownloadTime >= 400000) { // 400,000ms = 400 seconds
console.log("No download detected for 400 seconds, reloading the page...");
location.reload(); // Reload the page
}
}, 1000); // Check every second
}
window.addEventListener('load', () => {
monitorImageSrcChanges();
console.log("Yo");
});
</script>
"""
CSS="""
<style>
.image-monitor {
border:1px solid red;
}
/*
.svelte-1pijsyv{
border:1px solid green;
}
*/
.gallery-container{
max-height: 512px;
}
.butt{
background-color:#2b4764 !important
}
.butt:hover{
background-color:#3a6c9f !important;
}
</style>
"""
with gr.Blocks(head=CSS + JS) as demo:
with gr.Column(scale=2):
with gr.Group():
txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
seed_rand.click(randomize_seed, None, [seed], queue=False)
with gr.Row():
gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"], elem_id=["TheButt"])
random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output = [gr.Image(label=m, show_download_button=True, interactive=False, width=112, height=112, show_share_button=False, format="png", visible=True) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
with gr.Column(scale=2):
gallery = gr.Gallery(label="Output", visible=False, show_download_button=True,interactive=False, show_share_button=False, container=True, format="png", preview=True, object_fit="cover", columns=2, rows=2)
for m, o in zip(current_models, output):
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o], concurrency_limit=None, queue=False)
# o.change(add_gallery, [o, m, gallery], [gallery])
with gr.Column(scale=4):
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
random_button.click(random_choices, None, model_choice)
demo.launch(show_api=False, max_threads=400)