Update app.py
Browse files
app.py
CHANGED
@@ -1,219 +1,211 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from all_models import models
|
3 |
-
from externalmod import gr_Interface_load, save_image, randomize_seed
|
4 |
-
import asyncio
|
5 |
-
import os
|
6 |
-
from threading import RLock
|
7 |
-
lock = RLock()
|
8 |
-
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
9 |
-
|
10 |
-
|
11 |
-
def load_fn(models):
|
12 |
-
global models_load
|
13 |
-
models_load = {}
|
14 |
-
for model in models:
|
15 |
-
if model not in models_load.keys():
|
16 |
-
try:
|
17 |
-
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
18 |
-
except Exception as error:
|
19 |
-
print(error)
|
20 |
-
m = gr.Interface(lambda: None, ['text'], ['image'])
|
21 |
-
models_load.update({model: m})
|
22 |
-
|
23 |
-
|
24 |
-
load_fn(models)
|
25 |
-
|
26 |
-
|
27 |
-
num_models = 6
|
28 |
-
max_images = 6
|
29 |
-
inference_timeout = 300
|
30 |
-
default_models = models[:num_models]
|
31 |
-
MAX_SEED = 2**32-1
|
32 |
-
|
33 |
-
|
34 |
-
def extend_choices(choices):
|
35 |
-
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
|
36 |
-
|
37 |
-
|
38 |
-
def update_imgbox(choices):
|
39 |
-
choices_plus = extend_choices(choices[:num_models])
|
40 |
-
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
|
41 |
-
|
42 |
-
|
43 |
-
def random_choices():
|
44 |
-
import random
|
45 |
-
random.seed()
|
46 |
-
return random.choices(models, k=num_models)
|
47 |
-
|
48 |
-
|
49 |
-
# https://huggingface.co/docs/api-inference/detailed_parameters
|
50 |
-
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
51 |
-
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
|
52 |
-
kwargs = {}
|
53 |
-
if height > 0: kwargs["height"] = height
|
54 |
-
if width > 0: kwargs["width"] = width
|
55 |
-
if steps > 0: kwargs["num_inference_steps"] = steps
|
56 |
-
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
57 |
-
if seed == -1: kwargs["seed"] = randomize_seed()
|
58 |
-
else: kwargs["seed"] = seed
|
59 |
-
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
|
60 |
-
prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
|
61 |
-
await asyncio.sleep(0)
|
62 |
-
try:
|
63 |
-
result = await asyncio.wait_for(task, timeout=timeout)
|
64 |
-
except asyncio.TimeoutError as e:
|
65 |
-
print(e)
|
66 |
-
print(f"Task timed out: {model_str}")
|
67 |
-
if not task.done(): task.cancel()
|
68 |
-
result = None
|
69 |
-
raise Exception(f"Task timed out: {model_str}") from e
|
70 |
-
except Exception as e:
|
71 |
-
print(e)
|
72 |
-
if not task.done(): task.cancel()
|
73 |
-
result = None
|
74 |
-
raise Exception() from e
|
75 |
-
if task.done() and result is not None and not isinstance(result, tuple):
|
76 |
-
with lock:
|
77 |
-
png_path = "image.png"
|
78 |
-
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, seed)
|
79 |
-
return image
|
80 |
-
return None
|
81 |
-
|
82 |
-
|
83 |
-
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
|
84 |
-
try:
|
85 |
-
loop = asyncio.new_event_loop()
|
86 |
-
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
|
87 |
-
height, width, steps, cfg, seed, inference_timeout))
|
88 |
-
except (Exception, asyncio.CancelledError) as e:
|
89 |
-
print(e)
|
90 |
-
print(f"Task aborted: {model_str}")
|
91 |
-
result = None
|
92 |
-
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
|
93 |
-
finally:
|
94 |
-
loop.close()
|
95 |
-
return result
|
96 |
-
|
97 |
-
|
98 |
-
def add_gallery(image, model_str, gallery):
|
99 |
-
if gallery is None: gallery = []
|
100 |
-
with lock:
|
101 |
-
if image is not None: gallery.insert(0, (image, model_str))
|
102 |
-
return gallery
|
103 |
-
|
104 |
-
|
105 |
-
CSS="""
|
106 |
-
.gradio-container { max-width: 1200px; margin: 0 auto; !important; }
|
107 |
-
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
|
108 |
-
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
|
109 |
-
.guide { text-align: center; !important; }
|
110 |
-
"""
|
111 |
-
|
112 |
-
|
113 |
-
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=CSS) as demo:
|
114 |
-
gr.HTML(
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
)
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
with gr.
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
|
213 |
-
#stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])
|
214 |
-
|
215 |
-
gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")
|
216 |
-
|
217 |
-
#demo.queue(default_concurrency_limit=200, max_size=200)
|
218 |
-
demo.launch(show_api=False, max_threads=400)
|
219 |
-
# https://github.com/gradio-app/gradio/issues/6339
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from all_models import models
|
3 |
+
from externalmod import gr_Interface_load, save_image, randomize_seed
|
4 |
+
import asyncio
|
5 |
+
import os
|
6 |
+
from threading import RLock
|
7 |
+
lock = RLock()
|
8 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
9 |
+
|
10 |
+
|
11 |
+
def load_fn(models):
|
12 |
+
global models_load
|
13 |
+
models_load = {}
|
14 |
+
for model in models:
|
15 |
+
if model not in models_load.keys():
|
16 |
+
try:
|
17 |
+
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
18 |
+
except Exception as error:
|
19 |
+
print(error)
|
20 |
+
m = gr.Interface(lambda: None, ['text'], ['image'])
|
21 |
+
models_load.update({model: m})
|
22 |
+
|
23 |
+
|
24 |
+
load_fn(models)
|
25 |
+
|
26 |
+
|
27 |
+
num_models = 6
|
28 |
+
max_images = 6
|
29 |
+
inference_timeout = 300
|
30 |
+
default_models = models[:num_models]
|
31 |
+
MAX_SEED = 2**32-1
|
32 |
+
|
33 |
+
|
34 |
+
def extend_choices(choices):
|
35 |
+
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
|
36 |
+
|
37 |
+
|
38 |
+
def update_imgbox(choices):
|
39 |
+
choices_plus = extend_choices(choices[:num_models])
|
40 |
+
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
|
41 |
+
|
42 |
+
|
43 |
+
def random_choices():
|
44 |
+
import random
|
45 |
+
random.seed()
|
46 |
+
return random.choices(models, k=num_models)
|
47 |
+
|
48 |
+
|
49 |
+
# https://huggingface.co/docs/api-inference/detailed_parameters
|
50 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
51 |
+
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
|
52 |
+
kwargs = {}
|
53 |
+
if height > 0: kwargs["height"] = height
|
54 |
+
if width > 0: kwargs["width"] = width
|
55 |
+
if steps > 0: kwargs["num_inference_steps"] = steps
|
56 |
+
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
57 |
+
if seed == -1: kwargs["seed"] = randomize_seed()
|
58 |
+
else: kwargs["seed"] = seed
|
59 |
+
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
|
60 |
+
prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
|
61 |
+
await asyncio.sleep(0)
|
62 |
+
try:
|
63 |
+
result = await asyncio.wait_for(task, timeout=timeout)
|
64 |
+
except asyncio.TimeoutError as e:
|
65 |
+
print(e)
|
66 |
+
print(f"Task timed out: {model_str}")
|
67 |
+
if not task.done(): task.cancel()
|
68 |
+
result = None
|
69 |
+
raise Exception(f"Task timed out: {model_str}") from e
|
70 |
+
except Exception as e:
|
71 |
+
print(e)
|
72 |
+
if not task.done(): task.cancel()
|
73 |
+
result = None
|
74 |
+
raise Exception() from e
|
75 |
+
if task.done() and result is not None and not isinstance(result, tuple):
|
76 |
+
with lock:
|
77 |
+
png_path = "image.png"
|
78 |
+
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, seed)
|
79 |
+
return image
|
80 |
+
return None
|
81 |
+
|
82 |
+
|
83 |
+
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
|
84 |
+
try:
|
85 |
+
loop = asyncio.new_event_loop()
|
86 |
+
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
|
87 |
+
height, width, steps, cfg, seed, inference_timeout))
|
88 |
+
except (Exception, asyncio.CancelledError) as e:
|
89 |
+
print(e)
|
90 |
+
print(f"Task aborted: {model_str}")
|
91 |
+
result = None
|
92 |
+
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
|
93 |
+
finally:
|
94 |
+
loop.close()
|
95 |
+
return result
|
96 |
+
|
97 |
+
|
98 |
+
def add_gallery(image, model_str, gallery):
|
99 |
+
if gallery is None: gallery = []
|
100 |
+
with lock:
|
101 |
+
if image is not None: gallery.insert(0, (image, model_str))
|
102 |
+
return gallery
|
103 |
+
|
104 |
+
|
105 |
+
CSS="""
|
106 |
+
.gradio-container { max-width: 1200px; margin: 0 auto; !important; }
|
107 |
+
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
|
108 |
+
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
|
109 |
+
.guide { text-align: center; !important; }
|
110 |
+
"""
|
111 |
+
|
112 |
+
|
113 |
+
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=CSS) as demo:
|
114 |
+
gr.HTML()
|
115 |
+
with gr.Tab('Huggingface Diffusion'):
|
116 |
+
with gr.Column(scale=2):
|
117 |
+
with gr.Group():
|
118 |
+
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
119 |
+
neg_input = gr.Textbox(label='Negative prompt:', lines=1)
|
120 |
+
with gr.Accordion("Advanced", open=False, visible=True):
|
121 |
+
with gr.Row():
|
122 |
+
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
123 |
+
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
124 |
+
with gr.Row():
|
125 |
+
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
126 |
+
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
127 |
+
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
128 |
+
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
|
129 |
+
seed_rand.click(randomize_seed, None, [seed], queue=False)
|
130 |
+
with gr.Row():
|
131 |
+
gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
|
132 |
+
random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
|
133 |
+
#stop_button = gr.Button('Stop', variant='stop', interactive=False, scale=1)
|
134 |
+
#gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
|
135 |
+
gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")
|
136 |
+
|
137 |
+
with gr.Column(scale=1):
|
138 |
+
with gr.Group():
|
139 |
+
with gr.Row():
|
140 |
+
output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
|
141 |
+
interactive=False, width=112, height=112, show_share_button=False, format="png",
|
142 |
+
visible=True) for m in default_models]
|
143 |
+
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
144 |
+
|
145 |
+
with gr.Column(scale=2):
|
146 |
+
gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
|
147 |
+
interactive=False, show_share_button=True, container=True, format="png",
|
148 |
+
preview=True, object_fit="cover", columns=2, rows=2)
|
149 |
+
|
150 |
+
for m, o in zip(current_models, output):
|
151 |
+
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
|
152 |
+
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
|
153 |
+
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
|
154 |
+
o.change(add_gallery, [o, m, gallery], [gallery])
|
155 |
+
#stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
|
156 |
+
|
157 |
+
with gr.Column(scale=4):
|
158 |
+
with gr.Accordion('Model selection'):
|
159 |
+
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
|
160 |
+
model_choice.change(update_imgbox, model_choice, output)
|
161 |
+
model_choice.change(extend_choices, model_choice, current_models)
|
162 |
+
random_button.click(random_choices, None, model_choice)
|
163 |
+
|
164 |
+
with gr.Tab('Single model'):
|
165 |
+
with gr.Column(scale=2):
|
166 |
+
model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
|
167 |
+
with gr.Group():
|
168 |
+
txt_input2 = gr.Textbox(label='Your prompt:', lines=4)
|
169 |
+
neg_input2 = gr.Textbox(label='Negative prompt:', lines=1)
|
170 |
+
with gr.Accordion("Advanced", open=False, visible=True):
|
171 |
+
with gr.Row():
|
172 |
+
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
173 |
+
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
174 |
+
with gr.Row():
|
175 |
+
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
176 |
+
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
177 |
+
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
178 |
+
seed_rand2 = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
|
179 |
+
seed_rand2.click(randomize_seed, None, [seed2], queue=False)
|
180 |
+
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
|
181 |
+
with gr.Row():
|
182 |
+
gen_button2 = gr.Button('Generate', variant='primary', scale=2)
|
183 |
+
#stop_button2 = gr.Button('Stop', variant='stop', interactive=False, scale=1)
|
184 |
+
#gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
|
185 |
+
|
186 |
+
with gr.Column(scale=1):
|
187 |
+
with gr.Group():
|
188 |
+
with gr.Row():
|
189 |
+
output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
|
190 |
+
interactive=False, width=112, height=112, visible=True, format="png",
|
191 |
+
show_share_button=False, show_label=False) for _ in range(max_images)]
|
192 |
+
|
193 |
+
with gr.Column(scale=2):
|
194 |
+
gallery2 = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
|
195 |
+
interactive=False, show_share_button=True, container=True, format="png",
|
196 |
+
preview=True, object_fit="cover", columns=2, rows=2)
|
197 |
+
|
198 |
+
for i, o in enumerate(output2):
|
199 |
+
img_i = gr.Number(i, visible=False)
|
200 |
+
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False)
|
201 |
+
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
|
202 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
203 |
+
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
|
204 |
+
height2, width2, steps2, cfg2, seed2], outputs=[o],
|
205 |
+
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
|
206 |
+
o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
|
207 |
+
#stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])
|
208 |
+
|
209 |
+
#demo.queue(default_concurrency_limit=200, max_size=200)
|
210 |
+
demo.launch(show_api=False, max_threads=400)
|
211 |
+
# https://github.com/gradio-app/gradio/issues/6339
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|