Upload 3 files
Browse files- README.md +4 -7
- app.py +29 -25
- externalmod.py +27 -0
README.md
CHANGED
@@ -1,16 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🛕🛕
|
4 |
colorFrom: green
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
|
11 |
-
- Yntec/Diffusion80XX
|
12 |
-
- Yntec/HuggingfaceDiffusion
|
13 |
-
short_description: Compare up to 6 image models!
|
14 |
---
|
15 |
|
16 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Huggingface Diffusion
|
3 |
emoji: 🛕🛕
|
4 |
colorFrom: green
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.0.1
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
short_description: Compare 909+ AI Art Models 6 at a time!
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
from random import randint
|
3 |
from all_models import models
|
4 |
-
from externalmod import gr_Interface_load
|
5 |
import asyncio
|
6 |
import os
|
7 |
from threading import RLock
|
@@ -49,21 +48,16 @@ def random_choices():
|
|
49 |
|
50 |
# https://huggingface.co/docs/api-inference/detailed_parameters
|
51 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
52 |
-
async def infer(model_str, prompt, nprompt="", height=
|
53 |
-
from pathlib import Path
|
54 |
kwargs = {}
|
55 |
-
if height
|
56 |
-
if width
|
57 |
-
if steps
|
58 |
-
if cfg
|
59 |
-
|
60 |
-
|
61 |
-
else:
|
62 |
-
rand = randint(1, 500)
|
63 |
-
for i in range(rand):
|
64 |
-
noise += " "
|
65 |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
|
66 |
-
prompt=
|
67 |
await asyncio.sleep(0)
|
68 |
try:
|
69 |
result = await asyncio.wait_for(task, timeout=timeout)
|
@@ -72,22 +66,21 @@ async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=No
|
|
72 |
print(f"Task timed out: {model_str}")
|
73 |
if not task.done(): task.cancel()
|
74 |
result = None
|
75 |
-
raise Exception(f"Task timed out: {model_str}")
|
76 |
except Exception as e:
|
77 |
print(e)
|
78 |
if not task.done(): task.cancel()
|
79 |
result = None
|
80 |
-
raise Exception(e
|
81 |
if task.done() and result is not None and not isinstance(result, tuple):
|
82 |
with lock:
|
83 |
png_path = "image.png"
|
84 |
-
result
|
85 |
-
image = str(Path(png_path).resolve())
|
86 |
return image
|
87 |
return None
|
88 |
|
89 |
|
90 |
-
def gen_fn(model_str, prompt, nprompt="", height=
|
91 |
try:
|
92 |
loop = asyncio.new_event_loop()
|
93 |
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
|
@@ -117,8 +110,15 @@ CSS="""
|
|
117 |
"""
|
118 |
|
119 |
|
120 |
-
with gr.Blocks(theme='
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
with gr.Column(scale=2):
|
123 |
with gr.Group():
|
124 |
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
@@ -131,6 +131,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
|
131 |
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
132 |
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
133 |
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
|
|
|
|
134 |
with gr.Row():
|
135 |
gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
|
136 |
random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
|
@@ -142,7 +144,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
|
142 |
with gr.Group():
|
143 |
with gr.Row():
|
144 |
output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
|
145 |
-
interactive=False,
|
146 |
visible=True) for m in default_models]
|
147 |
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
148 |
|
@@ -179,6 +181,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
|
179 |
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
180 |
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
181 |
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
|
|
|
|
182 |
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
|
183 |
with gr.Row():
|
184 |
gen_button2 = gr.Button('Generate', variant='primary', scale=2)
|
@@ -189,7 +193,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
|
189 |
with gr.Group():
|
190 |
with gr.Row():
|
191 |
output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
|
192 |
-
interactive=False,
|
193 |
show_share_button=False, show_label=False) for _ in range(max_images)]
|
194 |
|
195 |
with gr.Column(scale=2):
|
@@ -210,6 +214,6 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
|
210 |
|
211 |
gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")
|
212 |
|
213 |
-
demo.queue(default_concurrency_limit=200, max_size=200)
|
214 |
demo.launch(show_api=False, max_threads=400)
|
215 |
# https://github.com/gradio-app/gradio/issues/6339
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from all_models import models
|
3 |
+
from externalmod import gr_Interface_load, save_image, randomize_seed
|
4 |
import asyncio
|
5 |
import os
|
6 |
from threading import RLock
|
|
|
48 |
|
49 |
# https://huggingface.co/docs/api-inference/detailed_parameters
|
50 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
51 |
+
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
|
|
|
52 |
kwargs = {}
|
53 |
+
if height > 0: kwargs["height"] = height
|
54 |
+
if width > 0: kwargs["width"] = width
|
55 |
+
if steps > 0: kwargs["num_inference_steps"] = steps
|
56 |
+
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
57 |
+
if seed == -1: kwargs["seed"] = randomize_seed()
|
58 |
+
else: kwargs["seed"] = seed
|
|
|
|
|
|
|
|
|
59 |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
|
60 |
+
prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
|
61 |
await asyncio.sleep(0)
|
62 |
try:
|
63 |
result = await asyncio.wait_for(task, timeout=timeout)
|
|
|
66 |
print(f"Task timed out: {model_str}")
|
67 |
if not task.done(): task.cancel()
|
68 |
result = None
|
69 |
+
raise Exception(f"Task timed out: {model_str}") from e
|
70 |
except Exception as e:
|
71 |
print(e)
|
72 |
if not task.done(): task.cancel()
|
73 |
result = None
|
74 |
+
raise Exception() from e
|
75 |
if task.done() and result is not None and not isinstance(result, tuple):
|
76 |
with lock:
|
77 |
png_path = "image.png"
|
78 |
+
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, seed)
|
|
|
79 |
return image
|
80 |
return None
|
81 |
|
82 |
|
83 |
+
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
|
84 |
try:
|
85 |
loop = asyncio.new_event_loop()
|
86 |
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
|
|
|
110 |
"""
|
111 |
|
112 |
|
113 |
+
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=CSS) as demo:
|
114 |
+
gr.HTML(
|
115 |
+
"""
|
116 |
+
<div>
|
117 |
+
<p> <center>For simultaneous generations without hidden queue check out <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>! For more options like single model x6 check out <a href="https://huggingface.co/spaces/John6666/Diffusion80XX4sg">Diffusion80XX4sg</a> by John6666!</center>
|
118 |
+
</p></div>
|
119 |
+
"""
|
120 |
+
)
|
121 |
+
with gr.Tab('Huggingface Diffusion'):
|
122 |
with gr.Column(scale=2):
|
123 |
with gr.Group():
|
124 |
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
|
|
131 |
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
132 |
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
133 |
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
134 |
+
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
|
135 |
+
seed_rand.click(randomize_seed, None, [seed], queue=False)
|
136 |
with gr.Row():
|
137 |
gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
|
138 |
random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
|
|
|
144 |
with gr.Group():
|
145 |
with gr.Row():
|
146 |
output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
|
147 |
+
interactive=False, width=112, height=112, show_share_button=False, format="png",
|
148 |
visible=True) for m in default_models]
|
149 |
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
150 |
|
|
|
181 |
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
182 |
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
183 |
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
184 |
+
seed_rand2 = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
|
185 |
+
seed_rand2.click(randomize_seed, None, [seed2], queue=False)
|
186 |
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
|
187 |
with gr.Row():
|
188 |
gen_button2 = gr.Button('Generate', variant='primary', scale=2)
|
|
|
193 |
with gr.Group():
|
194 |
with gr.Row():
|
195 |
output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
|
196 |
+
interactive=False, width=112, height=112, visible=True, format="png",
|
197 |
show_share_button=False, show_label=False) for _ in range(max_images)]
|
198 |
|
199 |
with gr.Column(scale=2):
|
|
|
214 |
|
215 |
gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")
|
216 |
|
217 |
+
#demo.queue(default_concurrency_limit=200, max_size=200)
|
218 |
demo.launch(show_api=False, max_threads=400)
|
219 |
# https://github.com/gradio-app/gradio/issues/6339
|
externalmod.py
CHANGED
@@ -583,3 +583,30 @@ def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="l
|
|
583 |
models.append(model.id)
|
584 |
if len(models) == limit: break
|
585 |
return models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
583 |
models.append(model.id)
|
584 |
if len(models) == limit: break
|
585 |
return models
|
586 |
+
|
587 |
+
|
588 |
+
def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
|
589 |
+
from PIL import Image, PngImagePlugin
|
590 |
+
import json
|
591 |
+
try:
|
592 |
+
metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
|
593 |
+
if steps > 0: metadata["num_inference_steps"] = steps
|
594 |
+
if cfg > 0: metadata["guidance_scale"] = cfg
|
595 |
+
if seed != -1: metadata["seed"] = seed
|
596 |
+
if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
|
597 |
+
metadata_str = json.dumps(metadata)
|
598 |
+
info = PngImagePlugin.PngInfo()
|
599 |
+
info.add_text("metadata", metadata_str)
|
600 |
+
image.save(savefile, "PNG", pnginfo=info)
|
601 |
+
return str(Path(savefile).resolve())
|
602 |
+
except Exception as e:
|
603 |
+
print(f"Failed to save image file: {e}")
|
604 |
+
raise Exception(f"Failed to save image file:") from e
|
605 |
+
|
606 |
+
|
607 |
+
def randomize_seed():
|
608 |
+
from random import seed, randint
|
609 |
+
MAX_SEED = 2**32-1
|
610 |
+
seed()
|
611 |
+
rseed = randint(0, MAX_SEED)
|
612 |
+
return rseed
|