import gradio as gr from all_models import models from externalmod import gr_Interface_load, save_image, randomize_seed import asyncio import os from threading import RLock from datetime import datetime preSetPrompt = "High fashion studio foto shoot. tall slender 18+ caucasian woman. gorgeous face. photorealistic. f1.4" negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness" lock = RLock() HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None def get_current_time(): return datetime.now().strftime("%y-%m-%d %H:%M:%S") def load_fn(models): global models_load models_load = {} for model in models: if model not in models_load: try: m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) except Exception as error: print(error) m = gr.Interface(lambda: None, ['text'], ['image']) models_load[model] = m load_fn(models) num_models = 6 max_images = 6 inference_timeout = 400 default_models = models[:num_models] MAX_SEED = 2**32 - 1 def extend_choices(choices): return choices[:num_models] + (num_models - len(choices)) * ['NA'] def update_imgbox(choices): choices_plus = extend_choices(choices) return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus] def random_choices(): import random random.seed() return random.choices(models, k=num_models) async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout): kwargs = {"height": height if height > 0 else None, "width": width if width > 0 else None, "num_inference_steps": steps if steps > 0 else None, "guidance_scale": cfg if cfg > 0 else None} if seed == -1: kwargs["seed"] = randomize_seed() else: kwargs["seed"] = seed task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) try: result = await asyncio.wait_for(task, timeout=timeout) except asyncio.TimeoutError as e: print(f"Task timed out: {model_str}") task.cancel() result = None except Exception as e: print(f"Error generating image: {model_str} - {e}") task.cancel() result = None if result and not isinstance(result, tuple): png_path = f"{model_str.replace('/', '_')}_{get_current_time()}_{kwargs['seed']}.png" with lock: image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, kwargs["seed"]) return image return None def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1): loop = asyncio.new_event_loop() try: result = loop.run_until_complete(infer(model_str, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout)) except (Exception, asyncio.CancelledError) as e: print(f"Error generating image: {e}") result = None raise gr.Error(f"Task aborted: {model_str}, Error: {e}") finally: loop.close() return result def add_gallery(image, model_str, gallery): if image is not None: gallery = [(image, model_str)] + gallery[:5] # Keep only the latest 6 images return gallery # Interface Layout CSS = """ .gradio-container { max-width: 1200px; margin: 0 auto; } .output { width: 112px; height: 112px; } .gallery { min-width: 512px; min-height: 512px; } """ js_func = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'dark') { url.searchParams.set('__theme', 'dark'); window.location.href = url.href; } } """ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=CSS) as demo: gr.HTML("") with gr.Tab('6 Models'): with gr.Column(scale=2): with gr.Group(): txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1) neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1) with gr.Accordion("Advanced", open=False): width = gr.Slider(label="Width", maximum=1216, step=32, value=0) height = gr.Slider(label="Height", maximum=1216, step=32, value=0) steps = gr.Slider(label="Number of inference steps", maximum=100, step=1, value=0) cfg = gr.Slider(label="Guidance scale", maximum=30.0, step=0.1, value=0) seed = gr.Slider(label="Seed", minimum=-1, maximum=MAX_SEED, step=1, value=-1) seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary") seed_rand.click(randomize_seed, None, [seed], queue=False) gen_button = gr.Button(f'Generate up to {num_models} images', variant='primary', scale=3) random_button = gr.Button('Randomize Models', variant='secondary', scale=1) gr.Markdown("") with gr.Row(): output = [gr.Image(label=m, show_download_button=True, elem_classes="output", interactive=False, width=112, height=112, format="png", visible=True) for m in default_models] current_models = [gr.Textbox(m, visible=False) for m in default_models] with gr.Column(scale=2): gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery", interactive=False, format="png", preview=True, object_fit="cover", columns=2, rows=2) for m, o in zip(current_models, output): gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn, inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o]) o.change(add_gallery, [o, m, gallery], [gallery]) model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models', value=default_models) model_choice.change(update_imgbox, model_choice, output) model_choice.change(extend_choices, model_choice, current_models) random_button.click(random_choices, None, model_choice) with gr.Tab('Single model'): model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0]) txt_input2 = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1) neg_input2 = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1) num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images') gen_button2 = gr.Button('Let the machine hallucinate', variant='primary', scale=2) output2 = [gr.Image(label='', show_download_button=True, elem_classes="output", interactive=False, width=112, height=112, format="png", show_share_button=False) for _ in range(max_images)] with gr.Column(scale=2): gallery2 = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery", interactive=False, show_share_button=True, format="png", preview=True, object_fit="cover", columns=2, rows=2) for i, o in enumerate(output2): # Change visibility based on num_images num_images.change( lambda num_images, i=i: gr.update(visible=(i < num_images)), # `i` corresponds to the index of the image [num_images], # Only num_images needs to be an input o, # Outputs the updated visibility of the image `o` queue=False ) # Image generation function gen_event2 = gr.on( triggers=[gen_button2.click, txt_input2.submit], fn=gen_fn, inputs=[i, num_images, model_choice2, txt_input2, neg_input2, height, width, steps, cfg, seed], outputs=[o] ) # Update gallery when a new image is generated o.change(add_gallery, [o, model_choice2, gallery2], [gallery2]) gr.Markdown("") demo.launch(show_api=False, max_threads=400)