import gradio as gr
from all_models import models
from prompt import thePrompt
from externalmod import gr_Interface_load, save_image, randomize_seed
import asyncio
import os
from threading import RLock
from datetime import datetime

# preSetPrompt = "tall slender athletic 18+ caucasian woman. gorgeous face. perfect small tits. short hair. sassy smile. shredded ripped torn shirt. unbuttoned jeans. explicit. artistic. photorealistic. f1.4"
preSetPrompt = thePrompt
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness"

lock = RLock()

HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.

def get_current_time():
    now = datetime.now()
    current_time = now.strftime("%y-%m-%d %H:%M:%S")
    return current_time

def load_fn(models):
    global models_load
    models_load = {}
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)

num_models = 3
max_images = 3
inference_timeout = 400
default_models = models[:num_models]
MAX_SEED = 2**32-1

def imgageHasUpdated(theImage):
    print(theImage)
    # outputs=lnk_output

def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]


def random_choices():
    import random
    random.seed()
    return random.choices(models, k=num_models)


async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
    kwargs = {}
    if height > 0: kwargs["height"] = height
    if width > 0: kwargs["width"] = width
    if steps > 0: kwargs["num_inference_steps"] = steps
    if cfg > 0: cfg = kwargs["guidance_scale"] = cfg

    if seed == -1:
        theSeed = randomize_seed()
    else: 
        theSeed = seed
    kwargs["seed"] = theSeed
        
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except asyncio.TimeoutError as e:
        print(e)
        print(f"infer: Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
        raise Exception(f"Task timed out: {model_str}") from e
    except Exception as e:
        print(e)
        print(f"infer: exception: {model_str}")
        if not task.done(): task.cancel()
        result = None
        raise Exception() from e
    if task.done() and result is not None and not isinstance(result, tuple):
        with lock:
            png_path =  model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png"
            image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, theSeed)
        return image
    return None

def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"gen_fn: Task aborted: {model_str}")
        result = None
        raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
    finally:
        loop.close()
    return result


def add_gallery(image, model_str, gallery):
    if gallery is None: gallery = []
    with lock:
        if image is not None: gallery.insert(0, (image, model_str))
        # if image is not None: imgageHasUpdated(model_str)
    return gallery

JS="""
<script>

// Function to monitor image src changes and automatically download the image
function monitorImageSrcChanges() {
  // Set of recently downloaded image URLs to avoid re-triggering the download
  const downloadedImages = new Set();

  // Track the last time a download occurred (in milliseconds)
  let lastDownloadTime = Date.now();

  // Create a MutationObserver instance
  const observer = new MutationObserver((mutationsList, observer) => {
    // Loop through all mutations
    mutationsList.forEach(mutation => {
      // Check if any new image tags were added
      if (mutation.type === 'childList') {
        mutation.addedNodes.forEach(node => {
          if (node.nodeName === 'IMG') {
            // New image added, monitor its src and download it
            observeImageSrc(node);
          }
        });
      }
      // Check if an image src attribute has changed
      if (mutation.type === 'attributes' && mutation.attributeName === 'src') {
        console.log('Image src changed:', mutation.target.src);
        downloadImage(mutation.target.src);
      }
    });
  });

  // Options for the observer (what to monitor)
  const config = { childList: true, attributes: true, subtree: true, attributeFilter: ['src'] };

  // Start observing the document body (or any specific element)
  observer.observe(document.body, config);

  // Initial monitoring of images already in the DOM
  document.querySelectorAll('img').forEach(img => {
    observeImageSrc(img);
  });

  // Function to observe an image's src attribute changes
  function observeImageSrc(img) {
    const srcObserver = new MutationObserver(mutations => {
      mutations.forEach(mutation => {
        if (mutation.type === 'attributes' && mutation.attributeName === 'src') {
          console.log('Image src changed:', img.src);
          downloadImage(img.src);
        }
      });
    });

    // Start observing src attribute changes of the image
    srcObserver.observe(img, { attributes: true, attributeFilter: ['src'] });
  }

  // Function to download an image automatically with a cooldown to prevent multiple downloads
  function downloadImage(src) {
    // Check if the image has been downloaded recently
    if (downloadedImages.has(src)) {
      return; // Prevent duplicate downloads
    }

    // Add the image src to the set of downloaded images
    downloadedImages.add(src);

    // Trigger the download
    const link = document.createElement('a');
    link.href = src;
    link.download = src.split('/').pop(); // Use the file name from the URL (last part of the src)
    link.style.display = 'none'; // Hide the link
    document.body.appendChild(link);
    link.click(); // Trigger the download
    document.body.removeChild(link); // Clean up the DOM by removing the link after download

    // Set a cooldown to allow the download to be triggered again after a delay (e.g., 500ms)
    setTimeout(() => {
      downloadedImages.delete(src); // Remove from the set after the cooldown
    }, 500); // 500ms cooldown (adjust as needed)

    // After download is triggered, click the button with id "TheButt"
    setTimeout(() => {
      const button = document.getElementById('TheButt');
      if (button) {
        button.click(); // Click the button
      } else {
        console.error('Button with id "TheButt" not found!');
      }
    }, 500); // Adjust the timeout if needed to make sure the download starts before clicking
    // Update the last download time
    lastDownloadTime = Date.now();
  }

  // Function to check for inactivity and reload the page if no download happened in 400 seconds
  setInterval(() => {
    const currentTime = Date.now();
    if (currentTime - lastDownloadTime >= 400000) { // 400,000ms = 400 seconds
      console.log("No download detected for 400 seconds, reloading the page...");
      location.reload(); // Reload the page
    }
  }, 1000); // Check every second
}

window.addEventListener('load', () => {
    monitorImageSrcChanges();
    console.log("Yo");
});
    
</script>
"""

CSS="""
<style>
    .image-monitor {
        border:1px solid red;
    }

    /*
    .svelte-1pijsyv{
        border:1px solid green;
    }
    */
    
    .gallery-container{
        max-height: 512px;
    }

    .butt{
        background-color:#2b4764 !important
    }
    .butt:hover{
        background-color:#3a6c9f !important;
    }
    
</style>
"""

with gr.Blocks(head=CSS + JS) as demo:
    with gr.Column(scale=2):
        with gr.Group():
            txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
            lnk_output = gr.Textbox(label='The Link:',visible=True,interactive=False,elem_id="LnkBox")
            neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
            with gr.Accordion("Advanced", open=False, visible=True):
                with gr.Row():
                    width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                with gr.Row():
                    steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                    cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                    seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                    seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                    seed_rand.click(randomize_seed, None, [seed], queue=False)
        with gr.Row():
            gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"], elem_id=["TheButt"])
            random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)

    with gr.Column(scale=1):
        with gr.Group():
            with gr.Row():
                output = [gr.Image(label=m, show_download_button=True, interactive=False, width=112, height=112, show_share_button=False, format="png", visible=True) for m in default_models]
                current_models = [gr.Textbox(m, visible=False) for m in default_models]

    with gr.Column(scale=2):
        gallery = gr.Gallery(label="Output", show_download_button=True,interactive=False, show_share_button=False, container=True, format="png", preview=True, object_fit="cover", columns=2, rows=2) 

    for m, o in zip(current_models, output):
        gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o], concurrency_limit=None, queue=False)
        # o.change(add_gallery, [o, m, gallery], [gallery])
        # o.change(imgageHasUpdated,[o])

    with gr.Column(scale=4):
        with gr.Accordion('Model selection'):
            model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
            model_choice.change(update_imgbox, model_choice, output)
            model_choice.change(extend_choices, model_choice, current_models)
            random_button.click(random_choices, None, model_choice)

demo.launch(show_api=False, max_threads=400)