File size: 13,322 Bytes
0af19e2
 
 
 
 
 
9fb7d02
 
900a4ee
 
 
75c2050
2274e07
0af19e2
 
 
9fb7d02
 
 
32f6afd
373eea5
0af19e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8a4e17
0af19e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b39c8f
 
 
 
 
 
 
 
e8a4e17
0af19e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed59d0
900a4ee
 
1b39c8f
0af19e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5434ce2
0af19e2
 
 
08ef861
 
 
 
 
 
 
 
 
 
7dc65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648d2e4
5434ce2
447880f
f8b08b7
0af19e2
 
9415f2d
2274e07
0af19e2
 
 
 
 
 
 
 
 
 
 
447880f
6fcb9d0
0af19e2
 
447880f
0af19e2
 
 
 
 
 
 
 
 
 
 
3a1e60d
0af19e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d562a8d
 
edc2efc
2274e07
0af19e2
 
 
 
 
 
 
 
900a4ee
0af19e2
 
 
900a4ee
0af19e2
 
 
 
 
 
 
 
b4bc419
0af19e2
 
 
 
 
 
 
 
 
 
 
 
 
 
b4bc419
0af19e2
79895bf
 
01627a1
6fcb9d0
7dc65c7
 
1b39c8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import gradio as gr
from all_models import models
from externalmod import gr_Interface_load, save_image, randomize_seed
import asyncio
import os
from threading import RLock
from datetime import datetime


preSetPrompt = "cute tall slender athletic 20+ caucasian woman. gorgeous face. perky tits. sly smile. lifting shirt. explicit pose. artistic. photorealistic. cinematic. f1.4"
# preSetPrompt = "cute tall slender athletic 20+ nude caucasian woman. gorgeous face. perky tits. gaping outie pussy. pussy juice. sly smile. explicit pose. artistic. photorealistic. cinematic. f1.4"
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness"

lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.

def get_current_time():
    now = datetime.now()
    now2 = now
    current_time = now2.strftime("%y-%m-%d %H:%M:%S")
    return current_time

def load_fn(models):
    global models_load
    models_load = {}
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)


num_models = 6
max_images = 6
inference_timeout = 400
default_models = models[:num_models]
MAX_SEED = 2**32-1


def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]


def random_choices():
    import random
    random.seed()
    return random.choices(models, k=num_models)


# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
    kwargs = {}
    if height > 0: kwargs["height"] = height
    if width > 0: kwargs["width"] = width
    if steps > 0: kwargs["num_inference_steps"] = steps
    if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
        
    if seed == -1:
        theSeed = randomize_seed()
        kwargs["seed"] = theSeed
    else: 
        kwargs["seed"] = seed
        theSeed = seed
        
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except asyncio.TimeoutError as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
        raise Exception(f"Task timed out: {model_str}") from e
    except Exception as e:
        print(e)
        if not task.done(): task.cancel()
        result = None
        raise Exception() from e
    if task.done() and result is not None and not isinstance(result, tuple):
        with lock:
            # png_path = "img.png"
            # png_path = get_current_time() + "_" + model_str.replace("/", "_") + ".png"
            # png_path =  model_str.replace("/", "_") + " - " +  prompt + " - " + get_current_time() + ".png"
            png_path =  model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png"
            image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, seed)
        return image
    return None


def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
        raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
    finally:
        loop.close()
    return result


def add_gallery(image, model_str, gallery):
    if gallery is None: gallery = []
    with lock:
        if image is not None: gallery.insert(0, (image, model_str))
    return gallery


CSS="""
.gradio-container { max-width: 1200px; margin: 0 auto; !important; }
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
.gallery { min_width=512px; min_height=512px; max_height=512px; !important; }
.guide { text-align: center; !important; }
"""

js_func = """
function refresh() {
    const url = new URL(window.location);
    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""

js_AutoSave="""
        console.log("Yo");
        
        var img1 = document.querySelector("div#component-355 .svelte-1kpcxni button.svelte-1kpcxni .svelte-1kpcxni img"),
        observer = new MutationObserver((changes) => {
            changes.forEach(change => {
                    if(change.attributeName.includes('src')){
                        console.log(img1.src);
                        document.querySelector("div#component-355 .svelte-1kpcxni .svelte-sr71km a.svelte-1s8vnbx button").click();
                    }
            });
        });
        observer.observe(img1, {attributes : true});
        
"""

with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=CSS) as demo:
# with gr.Blocks(theme='JohnSmith9982/small_and_pretty', fill_width=True, css=CSS, js=js_func) as demo:
    gr.HTML("")  
    with gr.Tab('6 Models'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
                neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand.click(randomize_seed, None, [seed], queue=False)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3)
                random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
                #stop_button = gr.Button('Stop', variant='stop', interactive=False, scale=1)
                #gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
            gr.Markdown("", elem_classes="guide")

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
                              interactive=False, width=112, height=112, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]

        with gr.Column(scale=2):
            gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
                                interactive=False, show_share_button=False, container=True, format="png",
                                preview=True, object_fit="cover", columns=2, rows=2) 

        for m, o in zip(current_models, output):
            gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                              inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
                              concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
            o.change(add_gallery, [o, m, gallery], [gallery])
            #stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])

        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)

    with gr.Tab('Single model'):
        with gr.Column(scale=2):
            model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
            with gr.Group():
                # global preSetPrompt
                # global negPreSetPrompt
                txt_input2 = gr.Textbox(label='Your prompt:', value = preSetPrompt, lines=3, autofocus=1)
                neg_input2 = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand2 = gr.Button("Randomize Seed", size="sm", variant="secondary")
                        seed_rand2.click(randomize_seed, None, [seed2], queue=False)
            num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
            with gr.Row():
                gen_button2 = gr.Button('Let the machine halucinate', variant='primary', scale=2)
                #stop_button2 = gr.Button('Stop', variant='stop', interactive=False, scale=1)
                #gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
                               interactive=False, width=112, height=112, visible=True, format="png",
                               show_share_button=False, show_label=False) for _ in range(max_images)]

        with gr.Column(scale=2):
            gallery2 = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
                                interactive=False, show_share_button=True, container=True, format="png",
                                preview=True, object_fit="cover", columns=2, rows=2) 

        for i, o in enumerate(output2):
            img_i = gr.Number(i, visible=False)
            num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False)
            gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
                               fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
                               inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
                                       height2, width2, steps2, cfg2, seed2], outputs=[o],
                                       concurrency_limit=None, queue=False)  # Be sure to delete ", queue=False" when activating the stop button
            o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
            #stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])
    
    # gr.Markdown(js_AutoSave)
    gr.Markdown("")

# demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)
# demo.launch(show_api=False, max_threads=400, js=js_AutoSave)