MV-Adapter-I2MV-SDXL / inference_i2mv_sdxl.py
huanngzh's picture
init
d3bc7f9
import argparse
import numpy as np
import torch
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
from transformers import AutoModelForImageSegmentation
from mvadapter.pipelines.pipeline_mvadapter_i2mv_sdxl import MVAdapterI2MVSDXLPipeline
from mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler
from mvadapter.utils import (
get_orthogonal_camera,
get_plucker_embeds_from_cameras_ortho,
make_image_grid,
)
def prepare_pipeline(
base_model,
vae_model,
unet_model,
lora_model,
adapter_path,
scheduler,
num_views,
device,
dtype,
):
# Load vae and unet if provided
pipe_kwargs = {}
if vae_model is not None:
pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
if unet_model is not None:
pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)
# Prepare pipeline
pipe: MVAdapterI2MVSDXLPipeline
pipe = MVAdapterI2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)
# Load scheduler if provided
scheduler_class = None
if scheduler == "ddpm":
scheduler_class = DDPMScheduler
elif scheduler == "lcm":
scheduler_class = LCMScheduler
pipe.scheduler = ShiftSNRScheduler.from_scheduler(
pipe.scheduler,
shift_mode="interpolated",
shift_scale=8.0,
scheduler_class=scheduler_class,
)
pipe.init_custom_adapter(num_views=num_views)
pipe.load_custom_adapter(
adapter_path, weight_name="mvadapter_i2mv_sdxl.safetensors"
)
pipe.to(device=device, dtype=dtype)
pipe.cond_encoder.to(device=device, dtype=dtype)
# load lora if provided
if lora_model is not None:
model_, name_ = lora_model.rsplit("/", 1)
pipe.load_lora_weights(model_, weight_name=name_)
return pipe
def remove_bg(image, net, transform, device):
image_size = image.size
input_images = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = net(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def preprocess_image(image: Image.Image, height, width):
image = np.array(image)
alpha = image[..., 3] > 0
H, W = alpha.shape
# get the bounding box of alpha
y, x = np.where(alpha)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = image[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (height * 0.9) / H)
H = int(height * 0.9)
else:
H = int(H * (width * 0.9) / W)
W = int(width * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# pad to H, W
start_h = (height - H) // 2
start_w = (width - W) // 2
image = np.zeros((height, width, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return image
def run_pipeline(
pipe,
num_views,
text,
image,
height,
width,
num_inference_steps,
guidance_scale,
seed,
remove_bg_fn=None,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
lora_scale=1.0,
device="cuda",
):
# Prepare cameras
cameras = get_orthogonal_camera(
elevation_deg=[0, 0, 0, 0, 0, 0],
distance=[1.8] * num_views,
left=-0.55,
right=0.55,
bottom=-0.55,
top=0.55,
azimuth_deg=[x - 90 for x in [0, 45, 90, 180, 270, 315]],
device=device,
)
plucker_embeds = get_plucker_embeds_from_cameras_ortho(
cameras.c2w, [1.1] * num_views, width
)
control_images = ((plucker_embeds + 1.0) / 2.0).clamp(0, 1)
# Prepare image
reference_image = Image.open(image) if isinstance(image, str) else image
if remove_bg_fn is not None:
reference_image = remove_bg_fn(reference_image)
reference_image = preprocess_image(reference_image, height, width)
elif reference_image.mode == "RGBA":
reference_image = preprocess_image(reference_image, height, width)
pipe_kwargs = {}
if seed != -1 and isinstance(seed, int):
pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)
images = pipe(
text,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_views,
control_image=control_images,
control_conditioning_scale=1.0,
reference_image=reference_image,
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
cross_attention_kwargs={"scale": lora_scale},
**pipe_kwargs,
).images
return images, reference_image
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Models
parser.add_argument(
"--base_model", type=str, default="stabilityai/stable-diffusion-xl-base-1.0"
)
parser.add_argument(
"--vae_model", type=str, default="madebyollin/sdxl-vae-fp16-fix"
)
parser.add_argument("--unet_model", type=str, default=None)
parser.add_argument("--scheduler", type=str, default=None)
parser.add_argument("--lora_model", type=str, default=None)
parser.add_argument("--adapter_path", type=str, default="huanngzh/mv-adapter")
parser.add_argument("--num_views", type=int, default=6)
# Device
parser.add_argument("--device", type=str, default="cuda")
# Inference
parser.add_argument("--image", type=str, required=True)
parser.add_argument("--text", type=str, default="high quality")
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--guidance_scale", type=float, default=3.0)
parser.add_argument("--seed", type=int, default=-1)
parser.add_argument("--lora_scale", type=float, default=1.0)
parser.add_argument("--reference_conditioning_scale", type=float, default=1.0)
parser.add_argument(
"--negative_prompt",
type=str,
default="watermark, ugly, deformed, noisy, blurry, low contrast",
)
parser.add_argument("--output", type=str, default="output.png")
# Extra
parser.add_argument("--remove_bg", action="store_true", help="Remove background")
args = parser.parse_args()
pipe = prepare_pipeline(
base_model=args.base_model,
vae_model=args.vae_model,
unet_model=args.unet_model,
lora_model=args.lora_model,
adapter_path=args.adapter_path,
scheduler=args.scheduler,
num_views=args.num_views,
device=args.device,
dtype=torch.float16,
)
if args.remove_bg:
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(args.device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, args.device)
else:
remove_bg_fn = None
images, reference_image = run_pipeline(
pipe,
num_views=args.num_views,
text=args.text,
image=args.image,
height=768,
width=768,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
seed=args.seed,
lora_scale=args.lora_scale,
reference_conditioning_scale=args.reference_conditioning_scale,
negative_prompt=args.negative_prompt,
device=args.device,
remove_bg_fn=remove_bg_fn,
)
make_image_grid(images, rows=1).save(args.output)
reference_image.save(args.output.rsplit(".", 1)[0] + "_reference.png")