Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import os | |
from threading import Thread | |
import random | |
from datasets import load_dataset | |
import numpy as np | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ | |
torch.cuda.empty_cache() | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024" | |
MODELS = os.environ.get("MODELS") | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
# ๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ก๋ | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
# ์ํคํผ๋์ ๋ฐ์ดํฐ์ ๋ก๋ | |
wiki_dataset = load_dataset("lcw99/wikipedia-korean-20240501-1million-qna") | |
print("Wikipedia dataset loaded:", wiki_dataset) | |
# TF-IDF ๋ฒกํฐ๋ผ์ด์ ์ด๊ธฐํ ๋ฐ ํ์ต | |
print("TF-IDF ๋ฒกํฐํ ์์...") | |
questions = wiki_dataset['train']['question'][:10000] # ์ฒ์ 10000๊ฐ๋ง ์ฌ์ฉ | |
vectorizer = TfidfVectorizer(max_features=1000) | |
question_vectors = vectorizer.fit_transform(questions) | |
print("TF-IDF ๋ฒกํฐํ ์๋ฃ") | |
def find_relevant_context(query, top_k=3): | |
# ์ฟผ๋ฆฌ ๋ฒกํฐํ | |
query_vector = vectorizer.transform([query]) | |
# ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ | |
similarities = (query_vector * question_vectors.T).toarray()[0] | |
# ๊ฐ์ฅ ์ ์ฌํ ์ง๋ฌธ๋ค์ ์ธ๋ฑ์ค | |
top_indices = np.argsort(similarities)[-top_k:][::-1] | |
# ๊ด๋ จ ์ปจํ ์คํธ ์ถ์ถ | |
relevant_contexts = [] | |
for idx in top_indices: | |
if similarities[idx] > 0: # ์ ์ฌ๋๊ฐ 0๋ณด๋ค ํฐ ๊ฒฝ์ฐ๋ง ํฌํจ | |
relevant_contexts.append({ | |
'question': questions[idx], | |
'answer': wiki_dataset['train']['answer'][idx], | |
'similarity': similarities[idx] | |
}) | |
return relevant_contexts | |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): | |
print(f'message is - {message}') | |
print(f'history is - {history}') | |
# ๊ด๋ จ ์ปจํ ์คํธ ์ฐพ๊ธฐ | |
relevant_contexts = find_relevant_context(message) | |
context_prompt = "\n\n๊ด๋ จ ์ฐธ๊ณ ์ ๋ณด:\n" | |
for ctx in relevant_contexts: | |
context_prompt += f"Q: {ctx['question']}\nA: {ctx['answer']}\n์ ์ฌ๋: {ctx['similarity']:.3f}\n\n" | |
# ๋ํ ํ์คํ ๋ฆฌ ๊ตฌ์ฑ | |
conversation = [] | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer} | |
]) | |
# ์ปจํ ์คํธ๋ฅผ ํฌํจํ ์ต์ข ํ๋กฌํํธ ๊ตฌ์ฑ | |
final_message = context_prompt + "\nํ์ฌ ์ง๋ฌธ: " + message | |
conversation.append({"role": "user", "content": final_message}) | |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(input_ids, return_tensors="pt").to(0) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=penalty, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=[255001], | |
) | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
chatbot = gr.Chatbot(height=500) | |
CSS = """ | |
/* ์ ์ฒด ํ์ด์ง ์คํ์ผ๋ง */ | |
body { | |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
min-height: 100vh; | |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
} | |
/* ๋ฉ์ธ ์ปจํ ์ด๋ */ | |
.container { | |
max-width: 1200px; | |
margin: 0 auto; | |
padding: 2rem; | |
background: rgba(255, 255, 255, 0.95); | |
border-radius: 20px; | |
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1); | |
backdrop-filter: blur(10px); | |
transform: perspective(1000px) translateZ(0); | |
transition: all 0.3s ease; | |
} | |
/* ์ ๋ชฉ ์คํ์ผ๋ง */ | |
h1 { | |
color: #2d3436; | |
font-size: 2.5rem; | |
text-align: center; | |
margin-bottom: 2rem; | |
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1); | |
transform: perspective(1000px) translateZ(20px); | |
} | |
h3 { | |
text-align: center; | |
color: #2d3436; | |
font-size: 1.5rem; | |
margin: 1rem 0; | |
} | |
/* ์ฑํ ๋ฐ์ค ์คํ์ผ๋ง */ | |
.chatbox { | |
background: white; | |
border-radius: 15px; | |
box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15); | |
backdrop-filter: blur(4px); | |
border: 1px solid rgba(255, 255, 255, 0.18); | |
padding: 1rem; | |
margin: 1rem 0; | |
transform: translateZ(0); | |
transition: all 0.3s ease; | |
} | |
/* ๋ฉ์์ง ์คํ์ผ๋ง */ | |
.chatbox .messages .message.user { | |
background: linear-gradient(145deg, #e1f5fe, #bbdefb); | |
border-radius: 15px; | |
padding: 1rem; | |
margin: 0.5rem; | |
box-shadow: 5px 5px 15px rgba(0, 0, 0, 0.05); | |
transform: translateZ(10px); | |
animation: messageIn 0.3s ease-out; | |
} | |
.chatbox .messages .message.bot { | |
background: linear-gradient(145deg, #f5f5f5, #eeeeee); | |
border-radius: 15px; | |
padding: 1rem; | |
margin: 0.5rem; | |
box-shadow: 5px 5px 15px rgba(0, 0, 0, 0.05); | |
transform: translateZ(10px); | |
animation: messageIn 0.3s ease-out; | |
} | |
/* ๋ฒํผ ์คํ์ผ๋ง */ | |
.duplicate-button { | |
background: linear-gradient(145deg, #24292e, #1a1e22) !important; | |
color: white !important; | |
border-radius: 100vh !important; | |
padding: 0.8rem 1.5rem !important; | |
box-shadow: 3px 3px 10px rgba(0, 0, 0, 0.2) !important; | |
transition: all 0.3s ease !important; | |
border: none !important; | |
cursor: pointer !important; | |
} | |
.duplicate-button:hover { | |
transform: translateY(-2px) !important; | |
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.3) !important; | |
} | |
/* ์ ๋ ฅ ํ๋ ์คํ์ผ๋ง */ | |
""" | |
with gr.Blocks(css=CSS) as demo: | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
theme="soft", | |
additional_inputs_accordion=gr.Accordion(label="โ๏ธ ์ต์ ", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="์จ๋", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=8000, | |
step=1, | |
value=4000, | |
label="์ต๋ ํ ํฐ ์", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.8, | |
label="์์ ํ๋ฅ ", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=20, | |
label="์์ K", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0, | |
label="๋ฐ๋ณต ํจ๋ํฐ", | |
render=False, | |
), | |
], | |
examples=[ | |
["ํ๊ตญ์ ์ ํต ์ ๊ธฐ์ 24์ ๊ธฐ์ ๋ํด ์์ธํ ์ค๋ช ํด์ฃผ์ธ์."], | |
["์ฐ๋ฆฌ๋๋ผ ์ ํต ์์ ์ค ๊ฑด๊ฐ์ ์ข์ ๋ฐํจ์์ 5๊ฐ์ง๋ฅผ ์ถ์ฒํ๊ณ ๊ทธ ํจ๋ฅ์ ์ค๋ช ํด์ฃผ์ธ์."], | |
["ํ๊ตญ์ ๋ํ์ ์ธ ์ฐ๋ค์ ์๊ฐํ๊ณ , ๊ฐ ์ฐ์ ํน์ง๊ณผ ๋ฑ์ฐ ์ฝ์ค๋ฅผ ์ถ์ฒํด์ฃผ์ธ์."], | |
["์ฌ๋ฌผ๋์ด์ ์ ๊ธฐ ๊ตฌ์ฑ๊ณผ ์ฅ๋จ์ ๋ํด ์ด๋ณด์๋ ์ดํดํ๊ธฐ ์ฝ๊ฒ ์ค๋ช ํด์ฃผ์ธ์."], | |
["ํ๊ตญ์ ์ ํต ๊ฑด์ถ๋ฌผ์ ๋ด๊ธด ๊ณผํ์ ์๋ฆฌ๋ฅผ ํ๋์ ๊ด์ ์์ ๋ถ์ํด์ฃผ์ธ์."], | |
["์กฐ์ ์๋ ๊ณผ๊ฑฐ ์ํ ์ ๋๋ฅผ ํ๋์ ์ ์ ์ ๋์ ๋น๊ตํ์ฌ ์ค๋ช ํด์ฃผ์ธ์."], | |
["ํ๊ตญ์ 4๋ ๊ถ๊ถ์ ๋น๊ตํ์ฌ ๊ฐ๊ฐ์ ํน์ง๊ณผ ์ญ์ฌ์ ์๋ฏธ๋ฅผ ์ค๋ช ํด์ฃผ์ธ์."], | |
["ํ๊ตญ์ ์ ํต ๋์ด๋ฅผ ํ๋์ ์ผ๋ก ์ฌํด์ํ์ฌ ์ค๋ด์์ ํ ์ ์๋ ๋ฐฉ๋ฒ์ ์ ์ํด์ฃผ์ธ์."], | |
["ํ๊ธ ์ฐฝ์ ๊ณผ์ ๊ณผ ํ๋ฏผ์ ์์ ๊ณผํ์ ์๋ฆฌ๋ฅผ ์์ธํ ์ค๋ช ํด์ฃผ์ธ์."], | |
["ํ๊ตญ์ ์ ํต ์ฐจ ๋ฌธํ์ ๋ํด ์ค๋ช ํ๊ณ , ๊ณ์ ๋ณ๋ก ์ด์ธ๋ฆฌ๋ ์ ํต์ฐจ๋ฅผ ์ถ์ฒํด์ฃผ์ธ์."], | |
["ํ๊ตญ์ ์ ํต ์๋ณต์ธ ํ๋ณต์ ๊ตฌ์กฐ์ ํน์ง์ ๊ณผํ์ , ๋ฏธํ์ ๊ด์ ์์ ๋ถ์ํด์ฃผ์ธ์."], | |
["ํ๊ตญ์ ์ ํต ๊ฐ์ฅ ๊ตฌ์กฐ๋ฅผ ๊ธฐํ์ ํ๊ฒฝ ๊ด์ ์์ ๋ถ์ํ๊ณ , ํ๋ ๊ฑด์ถ์ ์ ์ฉํ ์ ์๋ ์์๋ฅผ ์ ์ํด์ฃผ์ธ์."] | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() |