#Importing all the necessary packages | |
# import nltk | |
# import librosa | |
# import IPython.display | |
# import torch | |
import gradio as gr | |
# from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC | |
# nltk.download("punkt") | |
#Loading the model and the tokenizer | |
# model_name = "facebook/wav2vec2-base-960h" | |
# tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)#omdel_name | |
# model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
# def load_data(input_file): | |
# """ Function for resampling to ensure that the speech input is sampled at 16KHz. | |
# """ | |
# #read the file | |
# speech, sample_rate = librosa.load(input_file) | |
# #make it 1-D | |
# if len(speech.shape) > 1: | |
# speech = speech[:,0] + speech[:,1] | |
# #Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz. | |
# if sample_rate !=16000: | |
# speech = librosa.resample(speech, sample_rate,16000) | |
# #speeches = librosa.effects.split(speech) | |
# return speech | |
# def correct_casing(input_sentence): | |
# """ This function is for correcting the casing of the generated transcribed text | |
# """ | |
# sentences = nltk.sent_tokenize(input_sentence) | |
# return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) | |
# def asr_transcript(input_file): | |
# """This function generates transcripts for the provided audio input | |
# """ | |
# speech = load_data(input_file) | |
# #Tokenize | |
# input_values = tokenizer(speech, return_tensors="pt").input_values | |
# #Take logits | |
# logits = model(input_values).logits | |
# #Take argmax | |
# predicted_ids = torch.argmax(logits, dim=-1) | |
# #Get the words from predicted word ids | |
# transcription = tokenizer.decode(predicted_ids[0]) | |
# #Output is all upper case | |
# transcription = correct_casing(transcription.lower()) | |
# return transcription | |
# def asr_transcript_long(input_file,tokenizer=tokenizer, model=model ): | |
# transcript = "" | |
# # Ensure that the sample rate is 16k | |
# sample_rate = librosa.get_samplerate(input_file) | |
# # Stream over 10 seconds chunks rather than load the full file | |
# stream = librosa.stream( | |
# input_file, | |
# block_length=20, #number of seconds to split the batch | |
# frame_length=sample_rate, #16000, | |
# hop_length=sample_rate, #16000 | |
# ) | |
# for speech in stream: | |
# if len(speech.shape) > 1: | |
# speech = speech[:, 0] + speech[:, 1] | |
# if sample_rate !=16000: | |
# speech = librosa.resample(speech, sample_rate,16000) | |
# input_values = tokenizer(speech, return_tensors="pt").input_values | |
# logits = model(input_values).logits | |
# predicted_ids = torch.argmax(logits, dim=-1) | |
# transcription = tokenizer.decode(predicted_ids[0]) | |
# #transcript += transcription.lower() | |
# transcript += correct_casing(transcription.lower()) | |
# #transcript += " " | |
# return transcript[:3800] | |
from transformers import pipeline | |
p=pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") | |
def asr_transcript_long(input_file): | |
return p(input_file, chunk_length_s=10, stride_length_s=(2, 2))['text'] | |
gr.Interface(asr_transcript_long, | |
#inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Please record your voice"), | |
inputs = gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload your audio file here"), | |
outputs = gr.outputs.Textbox(type="str",label="Output Text"), | |
title="English Automated Speech Summarization", | |
description = "This tool transcribes your audio to the text", | |
examples = [["sample 1.flac"], ["sample 2.flac"], ["sample 3.flac"],["TheDiverAnUncannyTale.mp3"]], | |
theme="grass").launch() |