Upload core.py
Browse files
core.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
import whisper
|
5 |
+
|
6 |
+
import datetime
|
7 |
+
|
8 |
+
transformers.utils.move_cache()
|
9 |
+
|
10 |
+
# ====================================
|
11 |
+
# Load speech recognition model
|
12 |
+
# speech_recognition_pipeline = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
|
13 |
+
speech_recognition_model = whisper.load_model("base")
|
14 |
+
|
15 |
+
# ====================================
|
16 |
+
# Load text summarization model English
|
17 |
+
# text_summarization_pipeline_En = pipeline("summarization", model="facebook/bart-large-cnn")
|
18 |
+
tokenizer_En = transformers.AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
19 |
+
text_summarization_model_En = transformers.AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
20 |
+
|
21 |
+
# ====================================
|
22 |
+
# Load text summarization model Vietnamese
|
23 |
+
tokenizer_Vi = transformers.AutoTokenizer.from_pretrained("VietAI/vit5-large-vietnews-summarization")
|
24 |
+
text_summarization_model_Vi = transformers.AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large-vietnews-summarization")
|
25 |
+
|
26 |
+
def asr_transcript(input_file):
|
27 |
+
audio = whisper.load_audio(input_file)
|
28 |
+
output = speech_recognition_model.transcribe(audio)
|
29 |
+
text = output['text']
|
30 |
+
lang = "English"
|
31 |
+
if output["language"] == 'en':
|
32 |
+
lang = "English"
|
33 |
+
elif output["language"] == 'vi':
|
34 |
+
lang = "Vietnamese"
|
35 |
+
|
36 |
+
detail = ""
|
37 |
+
for segment in output['segments']:
|
38 |
+
start = str(datetime.timedelta(seconds=round(segment['start'])))
|
39 |
+
end = str(datetime.timedelta(seconds=round(segment['end'])))
|
40 |
+
small_text = segment['text']
|
41 |
+
detail = detail + start + "-" + end + " " + small_text + "\n"
|
42 |
+
return text, lang, detail
|
43 |
+
|
44 |
+
def text_summarize_en(text_input):
|
45 |
+
encoding = tokenizer_En(text_input, truncation=True, return_tensors="pt")
|
46 |
+
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
47 |
+
outputs = text_summarization_model_En.generate(
|
48 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
49 |
+
max_length=256,
|
50 |
+
early_stopping=True
|
51 |
+
)
|
52 |
+
text = ""
|
53 |
+
for output in outputs:
|
54 |
+
line = tokenizer_En.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
55 |
+
text = text + line
|
56 |
+
return text
|
57 |
+
|
58 |
+
def text_summarize_vi(text_input):
|
59 |
+
encoding = tokenizer_Vi(text_input, truncation=True, return_tensors="pt")
|
60 |
+
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
61 |
+
outputs = text_summarization_model_Vi.generate(
|
62 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
63 |
+
max_length=256,
|
64 |
+
early_stopping=True
|
65 |
+
)
|
66 |
+
text = ""
|
67 |
+
for output in outputs:
|
68 |
+
line = tokenizer_Vi.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
69 |
+
text = text + line
|
70 |
+
return text
|
71 |
+
|
72 |
+
def text_summarize(text_input, lang):
|
73 |
+
if lang == 'English':
|
74 |
+
return text_summarize_en(text_input)
|
75 |
+
elif lang == 'Vietnamese':
|
76 |
+
return text_summarize_vi(text_input)
|
77 |
+
else:
|
78 |
+
return ""
|